Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий — Технологические

Производство алюминия — сложный технологический процесс. В свободном виде алюминий вследствие своей активности не встречается. Его получают из минералов — бокситов, нефелинов и алунитов. При этом сначала производят глинозем, а затем из глинозема путем электролиза получают алюминий. Для производства алюминия требуется огромное количество электроэнергии. Поэтому только широкомасштабное строительство электростанций позволяет вырабатывать его в необходимом для промышленности количестве.  [c.240]


Имеются данные [5, 51], что потенциал пробоя для алюминия с технологической пленкой (алюминий в состоянии поставки) составляет примерно 2 в. Таким образом, потенциал пробоя поверхности алюминия, полированного в щелочном электролите, в 25 раз выше, чем поверхности алюминия с технологической окисной пленкой.  [c.94]

Эта особенность сплава обусловлена, во-первых, отсутствием в его составе алюминия (алюминий уменьшает технологическую пластичность), во-вторых, легированием и цирконием, и оловом. Следует обратить внимание на то, что олово оказывает благоприятное влияние на технологические свойства и а-сплавов. Так, например, сплав ВТ5-1 с оловом технологичнее аналогичного сила-  [c.142]

Вместо цветных металлов для этой цели применяют более дешевые немагнитные аустенитные стали. Аустенитные нержавеющие (см. гл. XIX) или износоустойчивые (см. гл. XX) стали пригодны как немагнитные, если по прочностным свойствам они удовлетворяют поставленным требованиям. Однако сталь Г13 часто не проходит по прочностным и технологическим свойствам, а аустенитные нержавеющие стали слишком дороги в качестве материала для деталей большой массы (например, для немагнитных бандажных колец в турбогенераторах). В этом случае применяют стали, легированные марганцем, хромом, алюминием при сравнительно повышенном содержании углерода (около 0,4%) и ограниченном содержании никеля.  [c.552]

Однако стали с высоким содержанием алюминия или кремния неудобны в технологическом отношении — они хрупки и очень тверды, что затрудняет их обработку. Поэтому эти сплавы не имеют широкого распространения.  [c.138]

Технологические способы повышения циклической прочности. Металлургические факторы. Большое влияние на циклическую прочность оказывает технология выплавки стали. Спокойные стали (раскисленные алюминием) имеют более высокие пределы выносливости, чем кипящие (раскисленные Мп и 81). Повышенной циклической прочностью обладают стали вакуумной плавки, а также полученные методами электроннолучевого и плазменного переплава или электродугового переплава под слоем синтетического шлака.  [c.316]

Смеси газов обладают в ряде.случаев лучшими технологическими, свойствами, чем отдельные газы. Например, смесь углекислого газа с кислородом (2—5%) способствует мелкокапельному переносу металла, уменьшению разбрызгивания (на 30—40%), улучшению формирования шва. Смесь из 70% Не и 30% Аг увеличивает производительность сварки алюминия, улучшает формирование шва и позволяет сваривать за один проход металл большей толщины.  [c.54]


Н. Н. Бенардосом в одном из его изобретений, но реально воплотилась в технологический процесс в конце 40-х годов XX в., когда появилась необходимость сварки активных металлов, таких, как алюминий и его сплавы, а позднее — титан и его сплавы.  [c.379]

Диаметр сверла выбирают по технологическим нормативам в зависимости от размера резьбы он соответствует примерно внутреннему диаметру резьбы. Длина / — полная длина цилиндрической части отверстия. Дно гнезда, образованное режущей частью сверла, условно изображают как конус с углом при вершине, равным 120°. Глубина отверстия, которое нужно просверлить, зависит от длины резьбы с полным профилем (которую нужно нарезать) и от величины сбега резьбы. В свою очередь на деталях длину резьбы с полным профилем выбирают в зависимости от материала детали (сталь, алюминий, бронза и т. д.).  [c.199]

Способность материала без разрушения получать большие остаточные деформации носит название пластичности. Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение 6 при разрыве. Чем больше S, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пластичных материалов относятся многие легированные стали.  [c.86]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]

Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]

Технологические данные технического алюминия АД и АД1  [c.13]

Технологические данные сплава алюминия с 30% олова. Для сплава разработан технологический процесс изготовления биметаллической ленты со стальным основанием [27], [11].  [c.116]

В начале работы по оптимизации технологического процесса детонационного нанесения покрытий из окиси алюминия эта задача решалась традиционным путем, т. е. построением графических зависимостей, отражающих влияние основных технологических параметров на свойства покрытий.  [c.86]

В качестве примера рассмотрим оптимизацию технологического процесса по пористости детонационных покрытий из окиси алюминия. Варьировались следующие факторы — средняя глубина  [c.88]


Проведенные расчеты позволили рекомендовать следующий технологический режим для получения на данной установке покрытий из окиси алюминия с минимальной пористостью  [c.89]

В настоящей работе проведена серия однофакторных экспериментов для оптимизации процесса получения покрытий из окиси алюминия на лабораторной установке при фиксированных условиях, указанных в работе [5]. Была определена зависимость между четырьмя основными технологическими факторами и рядом характеристик получаемых покрытий.  [c.91]

Полученные зависимости позволяют определять оптимальные значения технологических параметров детонационного напыления окиси алюминия, корреляцию между техническими характеристиками покрытий, производительностью, степенью проплавления, позволяют судить об особенностях детонационного метода, а при изменении методики напыления или напыляемого материала предсказывать на основании теории подобия значения параметров напыления, близкие к оптимальным.  [c.92]

Непосредственно используются только тепловая (около 75%), механическая (около 25%), электромагнитная — световая (менее 1%) энергии. Электрическая энергия применяется в ряде технологических процессов (например, в производстве алюминия). Остальные виды энергии выполняют роль первичных или вторичных ИЭ, переносчиков и накопителей.  [c.39]

Перспективны в этом отношении производные низкомолекулярных аминов типа ИФХАН, летучесть которых достигает 13,3 Па [ 144). Высокая летучесть указанных соединений предъявляет высокие требования к технологическому оформлению процесса производства антикоррозионной бумаги. Первые опытно-промышленные партии антикоррозионной бумаги с использованием в качестве ингибитора ИФХАН-1 в количестве 6—8 г/м показали высокую эффективность защиты от атмосферной коррозии серебра, олова, никеля, алюминия, магния.  [c.128]

За последнее десятилетие применение электричества получило особенно широкое распространение в химической промышленности для переработки бедных руд цветных металлов и получения ценных побочных продуктов. В массовом количестве стали производиться редкие металлы, алюминий, удобрения, хлор, щелочи, водород, кислород, пластические массы, резиновые изделия, синтетические материалы и т. п. При переработке нефти получаются такие синтетические материалы, как ацетатный шелк, целлофан и др. Для изготовления 1 т ацетатного шелка требуется до 20 тыс. квт-ч электроэнергии, т. е. такое же количество, как и для производства 1 т алюминия. Электролиз явился основой технологических способов порошковой металлургии (получение титана, ниобия, тантала, циркония, ванадия, урана).  [c.124]

Рассматриваемый пример использования материала на основе волокна РБВ-49 являлся технологической проработкой и не предназначался для реальной эксплуатации. Изготовленная панель имела трехслойную конструкцию (заполнитель найлон— фенольная смола). Размеры панели длина 2,55 мм, ширина в корневой части 0,81 м. Фитинг корневой части изготовлен из алюминия и несколько видоизменен по сравнению с серийным.  [c.166]

Стеклопластики нашли широкое применение в контейнерах типа иглу , однако на начальной стадии их промышленного освоения стоимость контейнеров была чрезмерно высокой, поскольку в процессе производства использовались ручной труд, неэкономичные приемы сборки, низкосортные смолы и несовершенная технология упрочнения пластиков стекловолокном. Для устранения этих недостатков был принят ряд мер. Во-первых, изменили форму контейнера, которая должна соответствовать форме салона самолета, использовали плоские панели, которые можно производить в большом количестве и улучшенного качества кроме того, получили разборные модели контейнеров, что позволило перевозить пустые контейнеры в разобранном виде вместе с другими грузами. Плоские панели для контейнеров могут производиться в слоистом исполнении с пенопластовой или ячеистой сердцевиной и покрытием из стеклопластика. Во-вторых, отказались от применения ручного труда в технологическом процессе, что возможно при использовании более дорогого стеклопластика, предварительно пропитанного эпоксидными смолами. Контейнеры с нижними захватами в основном изготовляются из алюминия, а для соединения отдельных частей в них используются заклепки.  [c.201]

Радиальный размер канала 2 из условий высокого электрического КПД и коэффициента мощности должен отвечать соотноще-пию ( 2 йс 0,75А2, где — глубина проникновения тока в расплавленный металл. Лишь при плавке алюминия по технологическим соображениям принимают 2 = 2-рЗ) А2, см. 15-3. Осевой размер канала прямоугольного сечения = 8к (12- Если по расчету получается аа>5с 2. целесообразно принять два параллельных канала, разнесенных в осевом направлении на расстояние, в 1,5—2,5 раза превышающее осевой размер каждого канала (см. 15-1).  [c.283]

Сплавы алюминия. Сп.тавы алюминия с медью, цинко.м, марганцем, кремнием и др. обладают лучшими технологическими свойствами и более высоко прочностью, чем чистый алюмишй , и поэтому находят широкое применение в технике. В коррозионном отношении все алюминиевые сплавы обладают значительно мспыие стойкостью, чем чистый алюмипи .  [c.271]

Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]

Сосуды со стенками средней толщины (до 40 мм) пт-роко используются в нефтегазохимическом аппаратостроении как технологические аппараты различных производстенных назначений, а также как емкости для хранения и транспортирования жидкостей и сжиженных газов. Нередко требуется защита рабочей поверхности аппарата от коррозионного воздействия среды, сохранения прочности при высоких температурах, вязкости и пластичности материала несущих конструктивных элементов при низкой температуре. Поэтому используемые материалы весьма разнообразны углеродистые, жаропрочные и высоколегированные стали, медь, алюминий и их сплавы. Так как для обеспечения необходимого срока  [c.20]


Д. М. Минцем и Я. Д. Раппопортом был предложен метод получения электрохимическим способом высококонцентрированных коагулирующих растворов путем анодного растворения в пластинчатых электролизерах обрезков железа или алюминия в водных растворах серной кислоты или поваренной соли. Это позволяет получать на месте потребления коагулирующие растворы с заранее заданными технологическими свойствами и затем дозировать их в обрабатываемую воду.  [c.221]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Записанную выше систему уравнений можно использовать для моделирования физико-химических явлений, протекающих в первой зоне. Анализируя результаты работы[37], можно считать, что реагирующая среда в первой зоне состоит из 3—4 компонентов конденсированной фазы (перхлората аммония ЫН4С104, металла, например алюминия А1, его оксида и полимерного связующего) и восьми газообразных компонентов (аммиака ЫН д, паров хлорной кислоты НСЮ4, хлора С12, закиси азота ЫдО, оксида азота ЫаО, кислорода 62, паров воды Н2О, мономера в газообразном состоянии и двуоксида углерода СОд). Если учитывать состав так называемых технологических добавок и катализаторов, то число компонентов в конденсированной и газовой фазах будет еще больше. Выше выписаны компоненты, которые составляют преобладающую долю массы типичного СТТ в первой зоне.  [c.243]

Сплавы системы железо—алюминий. Сплавы этой системы исследовали с целью выяснения возможности использования их для сердечников трансформаторов. Но несмотря на некоторые их преимущества по сравнению с железокремнистыми сталями (более высокие пластичность и электросопротивление) они не нашли промышленного применения, вероятно, из-за технологических недостатков. Диаграмма фазового равновесия системы железоалюми-ний приведена на рис. 107.  [c.149]

Деформируемые алюминиевые сплавы делятся на две группы технический алюминий и термически неупрочняемые сплавы (АМц, АМгЗ, АМг5 и др.) и термически упрочняемые сплавы (Д1, Д16, ВД17, АК4, АК8, Б95 и др.). Сплавы первой группы отличаются высокой пластичностью и хорошими технологическими свойствами. Сплавы второй группы имеют удовлетворительные пластичность и  [c.88]

В ряде случаев требуется такой магнитный материал, у которого магнитная проницаемость не зависит от напряженности магнитного поля. В частности, этот материал применяют в некоторых дросселях, трансформаторах тока с постоянной погрешностью, в аппаратуре дальней телефонной связи, высокочастотной многоканальной электросвязи, некоторых измерительных приборах и пр. К таким материалам относится перминвар — тройной сплав железа, никеля и кобальта. Магнитная проницаемость перминвара при специальной термообработке остается практически постоянной до значения напряженности магнитного поля 80—160 А/м. Применение перминвара ограничивается технологическими трудностями и высокой стоимостью. К числу сплавов, отличающихся известным постоянством магнитной проницаемости в слабых магнитных полях, относится сплав изоперм, состоящий из железа, никеля и меди с добавкой алюминия. Применяется он в производстве высококачественной телефонной аппаратуры, например для изготовления сердечников некоторых катушек.  [c.300]

Среди сплавов высокого сопротивления, которые, помимо нихрома, широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Они относятся к системе Fe—Сг—А1 и содержат в своем составе 0,7 %марганца, 0,6% никеля, 12—15% хрома 3,5—5,5 % алюминия и остальное — железо. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах. Имеют удовлетворительные технологические свойства и хорошие механические характеристики (табл. 4.4), что позволяет достаточно легко получать из чих проволоку, ленты, прутки и другие полуфабрикаты, которые способны свариваться и выдерживать большие механические нагрузки при высокой температуре без существенных деформаций.  [c.128]

В купале удачно соединяются свойства легкого металла и меди. Он выдерживает разнообразные технологические операции штамповку, изгибание, пайку, шлифование, полирование. Преимуществом купаля в этом отношении является возможность пайки со стороны меди обычным оловянистым припоем, чем избегается ряд трудностей, связанных с применением алюминия для замены им тяжелых металлов. Наличие в специальных алюминиевых припоях некоторого количества тяжелых металлов ведет к образованию микроэлементов и появлению коррозии.  [c.623]

Большое распространение имеют плакированные легкие металлы на основе дуралюмина и других прочных сплавов с плакирующим слоем из чистого алюминия или коррозионностойких сплавов алюминия с марганцем, магнием или кремнием. В силу своей высокой коррозионной стойкости и способиости легко выдерживать разнообразные технологические операции (гибку, вытяжку, выдавливание) плакированный дуралюмин широко применяют везде, где наряду с хорошими механическими свойствами требуется высокая химическая устойчивость самолето-, судо-, автостроение, химическое аппаратостроение, пищевая промышленность, горное дело.  [c.628]

Описаны теория и практадка производства цветных металлов (медн, никеля, свинца, цинка, алюминия, магния, титана, вольфрама, молибдена, золота). Рассмотрены технологические схемы, их аппаратурное оформление и технико-экономические показатели.  [c.21]

Во втором издании (первое —в 1975 г.) рассмотрены новые технологические процессы газотермическое напыление алюминием, скоростные процессы гальванического осаждения цинкового и цинконикелевого покрытия на трубы и муфты, хромирование труб из паст и др. Освещены разрушающие и неразрушающие способы и приборы контроля толщины различных покрытий. Описаны вопросы хранения, складирования и транспортировки труб с металлическими покрытиями. Приведены эксплуатационные характеристики труб с металлическими покрытиями.  [c.58]

Камиевидный излом в сталях без добавки титана может быть исправлен только высокотемпературным нагревом для растворения дисперсных нитридов алюминия, выделившихся по границам крупного зерна аустепита при горячей обработке, (ковке, штамповке), н последующим быстрым охлаждением для предотвращения обратного выделения нитридов алюминия из аустенита,. Температура нагрева для растворения нитридов алюминия должна быть не ниже 1250° С, После такой обработки последующей нормализацией и затем. обычной закалкой исправляют перегрев. Такая сложная обработка для устранения камневидного излома менее целесообразна с точки зрения производительности, чем применение стали с технологической добавкой титана.  [c.12]


Таким образом, проблема выбора оптимального (т. е. имеющего при рабочей температуре наименьшее удельное сопротивление при наилучших других технико-экономических показателях) криопроводникового материала сводится в основном к следующему применить легко доступный и деиювый алюминий и получить наименьшее возможное для криопроводника значение удельного сопротивления, но пойти на использование для охлаждения устройства жидкого водорода, что все же требует преодоления некоторых затруднений И, в частности, необходимости учета взрывоопасности водородовоздушной смеси или же применить более дорогой, дефицитный, сложный в технологическом отношении бериллий, но зато использовать в качестве хладагента более дешевый и легко доступный жидкий азот и тем самым уменьшить затраты мощности на охлаждение.  [c.212]

Изменения технологических параметров напыления, диктуемые техническим заданием предварительный подогрев подложки перед напылением, кратковременный отвод горелки из зоны напыления, оплавление покрытия с поверхности как его охлаждения, так и в процессе напыления — неизбежно вызывают структурные изменения в теле покрытия и приводят к различному характеру отрыва его от подложки (когезионному, адгезионному или смешанному) при испытаниях на прочность сцепления. Эти обстоятельства делают необходимым исследование фракто-графии излома покрытия, которое позволяет судить как о прочности самих кристаллических зерен, так и о прочности когезионной связи между ними в поликристаллической окиси алюминия. Методика эксперимента. Плазменное напыление  [c.127]

Вариации технологических параметров плазменного напыления веизбежво вызывают структурные изменения в теле покрытия и приводят к различному характеру отрыва его от подложки. Фрактографическое исследование покрытия позволяет судить как о прочности самих кристаллических зерен, так и о прочности когезионной связи между зернами в поликристаллической окиси алюминия. Показано влияние на морфологию покрытия предварительного подогрева подложки, отвода горелки в оплавления поверхности покрытия в процессе напыления. Предварительный подогрев подложки способствует увеличению прочности материала керамики, которая может превысить прочность отдельных зерен окиси алюминия, а также повышает прочность сцепления между ниобиевой подложкой и покрытием. Лит. — 4 наэв., ил. — 2, табл. — 1.  [c.265]

Для композитов алюминий — бор было установлено, что отклонение технологических параметров от рассмотренных выше оптимальных значений приводит к снижению прочности. Кроме того, было показано, что к разупрочнению приводит и термическая обработка по режиму диффузионной сварки, но без приложения давления. В наиболее обширном исследовании, проведенном Штурке [33], образцы композита А16061—35 об. % В отжигали в течение до 5000 ч при 505, 644 и 811 К. Полученные результаты представлены на рис. 8 в гл. 3 они показывают, что разупрочнению при 505 и 644 К предшествует инкубационный период, однако при 811 К его продолжительно сть должна быть меньше, чем минимальная в этих экспериментах продолжительность отжига (1 ч). Штурке не исследовал поверхности раздела, но предполагает, что разупроч -нение обусловлено либо нарушением связи волокон с матрицей (из-за чего не возникает сложного напряженного состояния), либо взаимодействием между бором и алюминием, приводящим к снижению деформации разрушения волокон.  [c.171]


Смотреть страницы где упоминается термин Алюминий — Технологические : [c.33]    [c.145]    [c.74]    [c.27]    [c.146]    [c.40]   
Краткий справочник металлиста (1972) -- [ c.0 ]



ПОИСК



276, 277 — Технологические полиэтилена с алюминием

Алюминий — Технологические обработка

Алюминий — Технологические свойства

ТЕХНОЛОГИЧЕСКИЕ МАРШРУТЫ ОБРАБОТКИ — ТОЧНОСТ алюминия

Технологическая схема получения алюминия из хлорида

Технологические и конструктивные особенности сварки алюминия

Технологические особенности сварки алюминия



© 2025 Mash-xxl.info Реклама на сайте