Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологические особенности сварки алюминия

Технологические особенности сварки алюминия  [c.81]

Технологические особенности сварки алюминия и его сплавов полуоткрытой дугой (по флюсу). Получение качественных сварных соединений из алюминия и его сплавов требует тщательного удаления перед сваркой жировой смазки со свариваемых кромок и электродной проволоки, а также обезжиривания поверхности металла на ширине 100—150 мм от кромки ацетоном или другими растворителями. Оксидную пленку, находящуюся под жировой смазкой на ширине 25—30. мм, удаляют механической зачисткой НЛП химическим травлением с последующей промывкой в проточной воде, осветлением, повторной промывкой и сушкой сжатым воздухом. Зачищенная поверхность алюминия сохраняет свои свойства в течение 3—4 дней. При более длительном хранении на зачищенной поверхности может образоваться оксидная пленка, адсорбирующая влагу из воздуха.  [c.423]


Специфические физические свойства титана определяют технологическими особенностями сварки. Вблизи точки плавления поверхностное натяжение жидкого титана составляет 1,39 Па, что в 1,5 раза выше, чем, например, алюминия. Это обеспечивает благоприятное формирование корня шва при сварке на весу . Однако при несоблюдении требований к точности сборки под сварку трудно избежать прожогов, так как расплавленный титан обладает низкой вязкостью (коэффициент вязкости уменьшается в 2,5 раза при возрастании температуры от 1730 до 1920 °С).  [c.118]

Как показывает опыт, монтаж и сварка коррозионностойких трубопроводов и конструкций из рассматриваемых материалов представляют определенные трудности и требуют более высокой культуры производства, чем аналогичные работы с трубопроводами и конструкциями из обычных углеродистых сталей. Повышенные требования к коррозионной стойкости и надежности при эксплуатации конструкций обусловливают ряд технологических особенностей монтажа и испытаний этих конструкций. Например, высокие требования предъявляются к условиям хранения основных и вспомогательных материалов. Обычно перед сваркой они подвергаются специальной очистке или травлению и обезжириванию. Особые теплофизические свойства нержавеющих сталей и алюминия требуют применения специальной технологии сварки.  [c.3]

Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки.  [c.413]

Кроме размерной обработки, ультразвук используется для интенсификации технологических процессов химико-термической обработки (например, азотирования), процессов сварки и пайки, особенно алюминия и его сплавов. При выплавке металла наложение ультразвуковых колебаний способствует дегазации расплава, повышает равномерность кристаллизации и мелкозернистость получаемых слитков. Недостатком процессов является большая стоимость установок и аппаратов, используемых для получения ультразвуковых колебаний, их передачи и распределения, сравнительно невысокий к. п. д. использования энергии.  [c.144]


Однако широкое техническое и промышленное применение ультразвука началось лишь в 50—60-х годах. Сварка металлов и пластмасс, резание твердых сплавов, стекла, керамики и других материалов, пайка, лужение алюминия, титана, молибдена и многие другие технологические операции с использованием ультразвука заняли значительное место на многих производствах. Ультразвуковая чистка, о которой говорилось выше, также оказалась весьма полезной, особенно при изготовлении прецизионных деталей в машиностроении. В настоящее время советская промышленность выпускает ряд универсальных ультразвуковых станков для изготовления твердосплавных матриц штампов, обработки линз из оптического стекла, гравирования и вырезки деталей из кремния и германия, прошивания отверстий и узких пазов и для многих других работ. Изготовляют также специальные ультразвуковые станки для выполнения определенных операций, например, для нарезания внутренних резьб в заготовках из труднообрабатываемых материал лов.  [c.57]

Развитие авиации, ракетостроения, увеличение мощности и повышение рабочих скоростей машин предъявляют возрастающие требования к металлическим материалам. Путь к повышению прочности металлов лежит в повышении их чистоты, уменьшении содержания примесей, ухудшающих механические свойства металла. Одной из таких вредных примесей является водород, который, проникая в металл уже в процессе его плавки, вызывает появление флокенов в стали, водородной болезни в меди и ее сплавах, пористости алюминия и его сплавов и т. д. Следующими стадиями технологического процесса обработки стали, сопровождающимися поглощением водорода, являются термическая обработка, сварка, травление в растворах кислот и занесение гальванических покрытий. Нанесение гальванопокрытий является, обычно, завершающей технологической операцией, которой подвергается большинство деталей из разных сортов сталей для предохранения их от коррозии, повышения стойкости к истиранию (хромирование) и т. д. Как показывает практика, особенно опасным является наводороживание сталей, прежде всего высокопрочных, в процессе нанесения гальванопокрытий и подготовительных операциях (обезжиривание, травление).  [c.3]

Одним из интересных и перспективных промышленных применений ультразвука является ультразвуковая сварка (УЗС). Этот способ сварки характеризуется весьма ценными технологическими свойствами возможностью соединения металлов без снятия поверхностных пленок и расплавления, особенно хорошей свариваемостью чистого и сверхчистого алюминия, меди, серебра возможностью соединения тончайших металлических фольг со стеклом и керамикой.  [c.3]

В книге рассмотрены особенности технологического процесса монтажа и сварки трубопроводов и некоторых видов конструкций из нержавеющей стали и алюминия. Описаны подготовительные операции по обработке материалов и подготовке их к сборке и сварке изложены технология сварки и контроль качества свариваемых конструкций в условиях монтажа. Дан анализ сварочного оборудования и приведены рекомендации по его использованию на монтажных работах. Приведены практические сведения по оборудованию, сварочным материалам, технологической оснастке.  [c.2]

Плазменно-дуговая сварка неплавящимся электродом. Технологические характеристики процесса повышаются при использовании плазменной сварки вместо обычной дуговой. Особенно широко в настоящее время применяется так называемая микроплазменная сварка для соединения тонколистового алюминия толщиной 1 мм и менее. При аргоно-дуговой сварке тонколистового алюминия неплавящимся электродом из-за прожогов и провисаний металла шва не удается получить качественного соединения. Снижение силы сварочного тока до 10 А и менее приводит к нарушению стабильности дуги. Наблюдаемое при этом блуждание дуги вызывает необходимость сваривать при коротком дуговом промежутке, в результате чего возможно замыкание  [c.648]

Технологические особенности сварки алюминия и его сплавов закрытой дугой под (флюсом). Этим способом сваривают алюминий толщиной 10—75 мм. Для получения равномерного оплавления обеих кромок сварного соединения принята схема сварки расщепленным электродом при поперечном по отношению к шву расположении электродных проволок. Одним из важных параметров режима в это.м случае является оптимальное расстояние между электродами, определяющее правильное формирование сварпого соединения.  [c.426]


Биметаллы успешно применяются во многих отраслях промышленности при решении конструктивных и технологических вопросов (гибка, сварка, отделка поверхности). Для изготовления емкостного оборудования используют биметалл углеродистая стальЧ-нержавеющая сталь . Весьма эффективно применение биметаллических конструкций из высокопрочных сталей с титаном. В этом случае удается получить высокую прочность и высокую коррозионную стойкость. Обычно такие биметаллические конструкции производят с применением взрывной технологии или диффузионной сваркой. В практике нашел широкое применение биметалл сталь-f медь , особенно для труб, подвергающихся высокому внутреннему давлению и действию коррозионной среды. Путем наплавки (иногда с последующей деформацией) производят биметаллические полуфабрикаты и изделия из биметалла сталь-f бронза . Большинство листов из алюминиевых сплавов производится с технологической планировкой чистым алюминием или сплавом алюминия с цинком, которая выполняет роль более коррозионностойкого слоя.  [c.77]

Алюминий и его сплавы, обладающие рядом физических и технологических особенностей, успешно сваривают в инертных газах. Однако при необходимости применяют ручную дуговую сварку плавящимися электродами и ручную сварку неплавлящимися электродами, например угольными. В табл. 11.1 приводится состав некоторых марок алюминиевой сварочной проволоки, которую употребляют для изготовления электродов для механизированной сварки, а также в качестве присадочного металла при ручной аргонодуговой сварке неплавящимся вольфрамовым электродом.  [c.143]

Трубопроводы из алюминиевых сплавов. Технологический процесс изготовления и монтажа трубопроводов из алюминиевых сплавов (чистый алюминий из-за его низкой прочности не применяется) также имеет некоторые особенности. Часть нз них аналогична технологии изготовления медных трубопроводов. Кроме того, характерными особенностями алюминиевых сплавов являются наличие тугоплавкой окисной пленки, затрудняющей сварку и пайку, а также склонность к образованию кристаллизационных трещин. Ор исную пленку удаляют путем предварительной очистки и воздействием флюсов или покрытий. Стойкость против образования трещин повышается при увеличении в сварном шве и околошовной зоне содержания железа.  [c.187]

Для наблюдения за перемешиванием расплавленного алюминия в зоне сварки и для выхода газов, особенно у новых, обильно смазанных проводов, полезно применение термитного патрона с вертикальным отверстием диаметром 3—5 мм (рис. 13). Образующийся в отверстии в процессе сварки столбик жидкого алюминия по мере остывания металла осаживается, заполняя пустоты в зоне сварного соединения. В результате соединение не имеет раковин и включений, а отжиг металла значительно уменьшается. Термитные патроны с отверстием широко применяются в Свердловэнерго и включены в типовые технологические карты К-4-7 по соединению сталеалюминиевых проводов термитной сваркой, разработаиные Московским филиалом Оргэнергостроя.  [c.68]

Указанные технологические возможности плазменной струи обусловлнвают ее применение для многих операций сварки, в том чпсле неметаллов (стекла, керамики, мета.ллокерамики и др.) и металлов с неметаллами резки всех материалов, особенно тугоплавких (молибдена, вольфрама, металлокерам1гки, стек.ло-пластиков н др.) и материалов с высокой теплопроводностью (меди, алюминия и др.) наплавки напыления пайки и термической обработки.  [c.298]

Плазменная струя обладает широкими технологическими возможностями. Она имеет большую тепловую мощность, которую можно регулировать в широких пределах. Кроме сварки плазменную струю широко применяют при резке, особенно таких материалов, как алюминий, медь, коррозионно-стойкие стали, керамика, — т. е. материалов, которые не поддаются газокислородной резке. Плазменную струю используют также при плавке металлов, термической строжке, наплавке поверхностей, ианесении покрытий.  [c.408]

За рубежом, особенно в США, наибольшее распространение получил двухфазный (а+р)-сплав Т1 — 6А1 — 4У и сплавы на его основе (табл. 6) [51]. В отечественной практике применяют два сплава этой системы ВТб и ВТ6С второй отличается меньшим содержанием алюминия и ванадия. Сплавы обладают хорошим комплексом прочностных, пластических и технологических свойств [52, 53]. Важным их преимуществом перед другими (а+Р)-сплавами является хорошая свариваемость аргоно-дуговой, дуговой под слоем флюса, контактной и стыковой сваркой. После сварки применяют отжиг 700— —800° С для снятия напряжений. Эти сплавы рекомендуются для изготовления штампосварных деталей, узлов и изделий, длительно работающих при температурах до 400—450° С, а также для изготовления емкостей, рабо-  [c.27]

В связи с отмеченными особенностями получить соединение при расплавлении обеих заготовок с металлом шва, представляющим твердый раствор, практически невозможно. Шов всегда будет содержать интерметаллиды, сильно охрупчивающие соединение. Наличие периода задержки образования интерметаллида Т1А1з при сварке титана с алюминием позволяет сваркой плавлением получить удовлетворительное соединение. Однако технологический процесс и его энергетические параметры необходимо выбирать таким образом, чтобы перегрев алюминия в месте контакта с титаном не превышал 800...850 °С. Поэтому, применяя различные источники теплоты и технику сварки, до расплавления доводят только алюминий, смачивающий титан и образующий с ним сварное соединение. Такой способ использован, например, для получения сварных нахлесточных соединений.  [c.202]


Смотреть страницы где упоминается термин Технологические особенности сварки алюминия : [c.139]    [c.293]    [c.82]   
Смотреть главы в:

Монтаж и сварка конструкций из нержавеющей стали и алюминия  -> Технологические особенности сварки алюминия



ПОИСК



220 — Технологические особенности

Алюминий — Технологические

Особенности сварки

Сварка Технологические особенности

Технологические и конструктивные особенности сварки алюминия



© 2025 Mash-xxl.info Реклама на сайте