Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварные швы — Свойства и химический состав металла

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


Сварные швы — Свойства и химический состав металла 144—153, 159, 247  [c.488]

Ручная дуговая сварка покрытыми электродами. Учитывая требования к свойствам сварного соединения, выбирается тип электрода, затем (см. гл. 2) по справочным данным или паспорту на электроды, где приводятся их технологические и другие показатели, с учетом условий выполнения сварки и имеющихся источников сварочного тока выбирается марка электрода. Часто выбор марки электродов производится сразу по их паспортным данным. В паспорте на электроды приводятся сведения о их назначении, типичные химический состав и механические свойства металла шва, технологические особенности сварки, рекомендуемые род и сила сварочного тока, производительность наплавки, расход электродов и др. Следует помнить, что химический состав металла шва по его длине изменяется. Это связано с нагревом электрода по мере его расплавления, а значит с изменением скорости его расплавления, т.е. изменяется уо. Геометрические размеры швов задаются по соответствующим ГОСТ или ТУ. Точность их исполнения зависит от квалификации сварщика и проверяется специальным шаблоном. При сварке многопроходных швов стыковых соединений первые проход (корневой) должен выполняться электродами диаметром 3. .. 4 мм для удобства провара корня шва. Следует иметь ввиду, что максимальная площадь поперечного сечения металла шва, наплавленного за один проход 30. .. 40 мм . При сварке угловых швов, за один проход, рекомендуется выполнять швы с катетом 8. .. 9 мм. При необходимости выполнения швов с большим катетом применяется сварка за два прохода и более.  [c.242]

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический состав металла шва при сварке рассматриваемых сталей незначительно отличается от состава основного металла (табл. 6.6). Это различие сводится к снижению содержания в металле шва углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания в нем углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем, кремнием, а при сварке низколегированных сталей - также и за счет перехода этих элементов из основного металла.  [c.264]


Свойства сварных соединений высокохромистых сталей, наиболее близкие к свойствам катаного или кованого основного металла, могут быть получены только в тех случаях, если химический состав металла швов подобен по составу свариваемого металла и после сварки возможна термообработка в виде высокого отпуска. Однако это не всегда выполнимо, особенно в условиях монтажа или ремонта.  [c.327]

При сварке сталей мартенситного, мартенсит-но-ферритного и ферритного классов (высокохромистых сталей) свойства сварных соединений могут быть удовлетворительными, если химический состав металла шва соответствует химическому составу свариваемого металла, а после сварки используется высокий отпуск. При сварке с использованием подогрева и последующей термической обработке применяют присадочный металл из аустенитной или аустенитно-ферритной стали. Использование таких материалов не обеспечивает равнопрочности шва и основного металла, но коррозионная стойкость и жаростойкость шва мало отличаются от соответствующих свойств основного металла.  [c.334]

Сварной шов представляет собой смесь расплавленных основного и присадочного металлов. Химический состав металла шва определяется составом стали и присадочной проволоки, долями их участия в образовании шва, а также характером взаимодействия жидких металла, шлака и газовой фазы. При сварке хромоникелевых аустенитных сталей основными легируюш,ими примесями шва являются хром и никель. Однако одних только хрома и никеля недостаточно для придания шву требуемых свойств. В подавляющем большинстве случаев требуется дополнительно легировать шов другими элементами. Как уже указывалось, часто бывает так, что шов по своему составу должен отличаться от свариваемой стали. В зависимости от вида сварки могут быть применены различные способы легирования металла шва.  [c.61]

Влияние фосфатной пленки на сварку и качество сварного соединения определяли сопоставлением следующих показателей 1) устойчивость процесса сварки и внешнее формирование шва наличие дефектов в металле шва 2) химический состав металла сварного шва 3) механические свойства и структура металла шва и сварного соединения.  [c.234]

В результате металлургических реакций, протекающих в сварочной ванне, и применения дополнительного присадочного металла химический состав металла шва может отличаться от химического состава основного металла. Это может привести к изменению прочностных характеристик металла, поэтому в испытания на свариваемость включают испытания механических свойств металла шва и сварного соединения.  [c.490]

В результате взаимодействия в сварочной зоне металла, флюса и газов образуется сварной шов, металл которого имеет определенный химический состав. Химический состав металла шва во многом предопределяет механические и коррозионные свойства, а также склонность его к образованию горячих трещин, В связи с этим к сварочным флюсам предъявляют ряд требований, при удовлетворении которых можно получить необходимое качество сварных швов и условия протекания технологического процесса.  [c.306]

В результате реакций, протекающих в сварочной ванне, и применения дополнительного присадочного металла химический состав металла шва может отличаться от химического состава основного металла. Поэтому в испытания на свариваемость включают испытания механических свойств металла шва и сварного соединения.  [c.668]

Химический состав металла шва, его структура и механические свойства зависят от состава электродного металла, состава покрытия и флюсов, газов, окружающих ванну, режимов и способов сварки, приемов ведения сварки и других причин. Получение сварного соединения высокого качества зависит также и от состава основного металла,  [c.27]

Активные флюсы ОСЦ-45, АН-348-А, АН-60, ФЦ-6 и другие при дуговой сварке никеля Н-1, НП-1 и НП-2 обеспечивают устойчивость процесса, хорошее формирование металла шва и легкую отделимость шлаковой корки. Однако в металле шва наблюдается большое количество пор, трещин и шлаковых включений. Металлографический анализ показал, что наплавленный металл отличается от основного грубой столбчатой структурой со строго ориентированным направлением дендритов и утолщенными эвтектическими прослойками по границам зерен. Показатели механических свойств, а также коррозионная стойкость сварных соединений оказались неудовлетворительными. Химический состав металла сварных швов, выполненных под этими флюсами, приведен в табл. 5.2.  [c.377]


Биметалл из стали Ст. 3 и нержавеющей стали предназначается для изготовления двухслойной сварной аппаратуры. Химический состав и механические свойства основного металла и нержавеющей стали согласно временным техническим условиям (МПТУ 2116-49) Министерства черной металлургии СССР приведены в табл. 116 и 117.  [c.273]

При оценке и сопоставлении электродов по свойствам сварного соединения не следует забывать, что эти свойства зависят не только от электрода, но и от основного (свариваемого) металла, доля которого в шве при различных условиях сварки (типах соединения, режимах) может быть различной. Поэтому следует различать свойства и химический состав металла шва и наплавленного металла, состоящего только из металла электрода. Для примерной оценки доли основного металла в шве в табл. 8 приводятся некоторые экспериментальные данные.  [c.16]

Оптимальный расход углекислого гааа зависит от конструкции горелки, ее положения относительно свариваемой детали и типа соединения. Увеличение расхода газа сверх минимально необходимого очень слабо влияет на устойчивость дуги, химический состав металла шва (фиг. 125) и свойства сварных соединений.  [c.458]

Сварочная дуга нагревает металл значительно выше точки плавления. В катодной п анодной областях температура близка к температуре кипения металла. В результате меняется химический состав металла и его структура после затвердевания, изменяются и механические свойства. Металл сварного шва обычно по своим свойствам отличается от основного металла не затронутого сваркой.  [c.77]

После полной термообработки сварное соединение, как правило, становится равноценным основному металлу по всему комплексу физико-химических свойств при условии, что химический состав металла шва и свариваемой стали будет одинаков. В ряде случаев при одинаковых с основным металлом химическом составе и термообработке металл шва может иметь механические свойства, превышающие свойства основного металла. Это обусловлено более благоприятной структурой первичной кристаллизации и большей химической однородностью металла шва по сравнению с катаным металлом, полученным из относительно крупных слитков.  [c.548]

Химический состав металла шва оказывает большое влияние на коррозионную стойкость сварных соединений. Коррозионно-стойкие стали, даже не подвергнутые специальным видам улучшения — вакуумному, электрошлаковому, плазменно-дуговому и электронно-дуговому переплавам — отличаются высокой чистотой по вредным примесям и хорошо раскислены. В связи с этим одной из важнейших задач является получение сварных швов, приближающихся по составу и свойствам к свариваемому металлу. С этой целью принимают специальные меры по ограничению насыщения сварочной ванны кислородом, серой, фосфором, углеродом, азотом из сварочных материалов и атмосферы. Все это тем более важно, что литой металл шва, как правило, по пластичности, вязкости уступает основному металлу, прошедшему улучшение при металлургическом переделе. Одним из путей повышения качества швов является дополнительное легирование, которое может осуществляться как с помощью присадочного материала, так и с помощью защитных шлаков.  [c.51]

Многие весьма ответственные изделия вполне надежно работают после сварки без какой-либо термообработки. В то же время термообработка нередко заметно улучшает механические свойства и структуру сварных соединений, способствуя повыщению их работоспособности. Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности при серийном производстве. Вопрос о проведении послесварочной термообработки или отказе от нее решают, принимая во внимание химический состав металла, метод сварки и присадочный металл, конструктивное оформление соединений и узлов, требования к механическим свойствам, условия эксплуатации. Следует учитывать также толщину металла. При толщинах >35...40 мм исключить послесварочную термообработку для уменьшения остаточных напряжений весьма проблематично.  [c.98]

Введение в сварочную ванну присадочного материала позволяет в широких пределах изменить химический состав металла шва и тем самым регулировать его структуру и свойства. Кроме того, использование присадки дает возможность регулировать геометрические размеры шва, увеличивать его сечение с целью устранения одного из наиболее распространенных дефектов - ослабления шва. Присадочный материал используется в компактном виде (проволока, лента и др.) и в виде порошков. Легирование сварного шва можно также осуществлять элементами, предварительно нанесенными на поверхность свариваемых кромок напылением, обмазкой, электроискровым способом и др.  [c.425]

Заготовки для сварки и образцов изготовлялись с учетом различия механических свойств поковок в тангенциальном и. радиальном направлениях. Химический состав металла шва приведен в табл.,. 36. Сварка производилась электродами с покрытием ЦЛ-27. Температура предварительного и сопутствующего подогрева 400°С. Отпуск после сварки производился при температуре 700, 720 и 740°С. Длительность выдержки при отпуске устанавливалась из расчета 4—5 мин на 1 мм и при толщине сварных стыков 100 мм составляла  [c.115]

Улучшение термической обработки стали перед сваркой и повышением температуры отпуска после нормализации может значительно повысить ее жаропрочные свойства. Одновременно необходимо стремиться изменить химический состав металла шва путем замены ниобия в электродах ЦЛ-27 другими элементами, что дополнительно позволит улучшить прочностные и пластические свойства металла шва и сварных соединений в целом.  [c.123]


В случае необходимости расчета механических свойств сварного соединения выбирается пункт три основного меню. В нем пользователь выбирает марку свариваемой стали и электродной проволоки. Меню содержит более 50 марок стандартных сталей и 10 марок электродных проволок. В случае, если требуется сварить сталь, отсутствующую в списке, или исследовать влияние какого-либо химического элемента на прочностные характеристики соединения, можно задать химический состав металла и проволоки самостоятельно, используя соответствующие пункты меню.  [c.73]

Указанные особенности газовой сварки чугуна обусловливают получение сварного соединения, механические свойства, химический состав и коррозионная стойкость которого идентичны этим показателям основного металла.  [c.4]

Прп сварке действует много факторов, влпягощих в различной степени на конечные размеры и свойства шва и сварного соединения. К ним относятся сила тока, напряжение, скорость сварки, размеры и химический состав металла электродной проволоки или стержня, впд и состав защитной среды, размеры и химический состав основного металла, температура окружающего воздуха.  [c.174]

Известно, что требуемая прочность и пластичность металла шва при сварке сталей повышенной прочности определяются химическим состаном. На основании изучения, анализа и сопоставления химического состава и механических свойств металла швов, полученных при сварке низколегированных сталей как в нашей стране, так и за рубежом, а также рекомендаций по процентному содержанию легирующих элементов в сварных швах, был выбран следующий предварительный химический состав металла шва, который необходимо  [c.121]

Рассмотрены основные технологические операции при изготовлении и ремонте котлов, сосудов и трубопроводов обработка металла в заготовительных цехах, изготовление обечаек путем вальцовки п штамповки, изготовление днищ с помощью штамповки и фланжировки, гибка труб, штамповка отводов, переходов и тройников, вальцовка труб в барабаны котлов. Подробно освещены требования к сварке изделий котлонадзора, а также требования к термической обработке сварных соединений. Приведены данные о материалах, применяемых для изготовления п ремонта объектов котлонадзора. Описаны механические свойства, химический состав и области применения сталей, чугунов и цветных металлов, используемых для котлов, трубопроводов и сосудов.  [c.2]

Приводимые в некоторых литературных источниках методы расчетно-экспериментального определения режимов сварки основаны на изучении уже готовых сварных соединений (определение F и F , уо и у ). Для определения химического состава шва нужно также учесть металлургические процессы (легирование или угар тех или иных элементов). В литературе они приводятся в общем виде, на практике же могут значительно различаться. Таким образом, имея экспериментальный шов, проще и точнее можно провести химический анализ металла. При этом, зная химический состав металла шва и термический цикл сварки, можно судить о его механических и других свойствах, а с учетом теплового цикла в ЗТВ и о свойствах сварного соединения в целом. Структура металла и его свойства определяются с помощью термокинетических и изотермических диаграмм распада аустенита. Для высоколегированных, хромоникелевых и аустенитных сталей фазовый состав металла можно приблизительно определить по диаграмме Шеффлера. Более подробные сведения приво-  [c.241]

Например, азот в углеродистых сталях является вредной примесью (образуются нитриды), из-за чего резко снижаются механические свойства сварного шва и стойкость к старению, тогда как в сталях аустенйтного класса азот является полезной добавкой. При аргонодуговой сварке углеродистых сталей для поддува можно применять не только аргон или углекислый газ, но и азот, если в сварочную ванну будут введены элементы-раскислители в виде кремния и марганца. Поэтому выбор газа и присадочного материала должны обеспечивать заданные механические свойства, химический состав и структуру сварного шва. При сварке в защитной среде инертных газов расплавленный металл сварочной ванны изолирован от воздействия кислорода и азота воздуха поэтому металлургические процессы могут происходить между элементами, содержащимися только в расплавленном металле сварочной ванны.  [c.220]

С ПОМОЦЦ.Ю термической обработки удается получать одинаковую во всем сварном изделии микроструктуру, если химический состав металла шва не отличается от химического состава основного металла. Такой металл обладает повышенными механическими свойствами и способностью длительно работать в условиях нагрева. Однако для повышения длительности работы изделий нужно правильно выбрать режим термической обработки (табл. 37). Л)гчшая термическая обработка сварных изделий из теплоустойчивой стали — закалка и высокий отпуск. На практике часто применяют только высокий отпуск или отжиг с нагревом до температуры около 780°С.  [c.118]

Свойства сварных соединений зависят от металла шва и свойств различных зон термического влияния. Для подавляющего большинства сталей удается получить такой химический состав металла шва и его структуру, которые обеспечивают прочность и пластичность металла шва не ниже, а во многих случаях и выше тех же характеристик основного металла. Как правило, этого удается достигнуть непосредственно после сварки, а в некоторых случаях — после термической обработки сварной конструкции. Свойства околошовной зоны в основном зависят от реакции основного металла на термический цикл сварки на них крайне мало влияет состав металла шва. В большинстве случаев, в особенности для сложнолегированных сталей, чувствительных к термическому циклу сварки, задача обеспечения необходимых механических свойств сварных соединений сводится к достижению необходимых свойств металла в зо-  [c.99]

При оценке о кидаемых механических свойств металла шва необходимо учитывать действие следующих технологических факторов долю участия основного металла н формировании шва и его химический состав тип и химический состав сварочных материалов лютод п ре жим сварки тип соедииепнн п число проходов (слоев) в сварном шве размеры сварного соединения вели-  [c.198]

Механические свойства металла Н1ва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический состав лгеталла шва при сварке рассматриваемых сталей незначительно отличается от состава основного металла (табл. 47). Это различие сводится к снижению содержа-  [c.215]

В первом случае хрупкость, связанная с крупным зерном, представляет опасность не только для околошовной зоны, но и для металла сварного шва. В некоторой степени она может быть уменьшена, если применять сварочные материалы, даюн ,ие состав металла швов, который при сварочных скоростях охлаждения позволяет получить не чисто ферритную структуру, а с некоторым содержанием мартенситной составляющей. 9то возможно при сварке сталей, содержащих Сг 18%, и достигается введением в металл шва углерода, азота, никеля, марганца. В зависимости от свойств такого закаленного при сварке металла шва выбирают и реячим последующей термообработки. Обычно появление такой гетерогенной структуры снижает коррозионную стойкость сварных соединений в ряде химически агрессивных сред.  [c.274]


Если у потребителя сталь подвергается сварке, то в зоне теплового влияния сварного шва свойства металла изменяются и для потребителя важно знать химический состав стали, так как именно он будет определять свойства стали в этой зоне. Одновременно потребителю необходимо знать и исходные ме-ланнчсскне свойства металла, так как те части изделий, которые не подвергали тепловому влиянию сварного шва, сохраняют свои свойства. Металл в этом случае поставляется и по хи-  [c.195]


Смотреть страницы где упоминается термин Сварные швы — Свойства и химический состав металла : [c.74]    [c.8]    [c.239]    [c.224]    [c.30]    [c.61]    [c.54]    [c.26]    [c.47]    [c.73]    [c.142]    [c.216]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.144 , c.153 , c.159 , c.247 ]



ПОИСК



1 свойства 285 — Химический соста

275 — Свойства и химический состав

426 — Свойства и состав

И ила и химического состава металла

Металлов Свойства

Металлы свойства химические

Металлы химическая

Сварные швы — Свойства и химический

Состав металла

Химический состав металла сварных



© 2025 Mash-xxl.info Реклама на сайте