Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимость амплитуды вынужденных колебаний от частоты

Исследуем зависимость амплитуды вынужденных колебаний от частоты возмущающей силы.  [c.538]

С дальнейшим ростом частоты изменения вынуждающей силы амплитуда вынужденных колебаний начинает уменьшаться. Зависимость амплитуды вынужденных колебаний от частоты 0 изменения вынуждающей силы показана графически на рнс. 150 с помощью амплитудных резонансных кривых. Каждая из них соответствует определенному коэффициенту затухания р(Р1<Р2<Рз)- Чем меньше р, тем выше и правее лежит максимум данной резонансной кривой.  [c.189]


Рис. 3.17. Зависимость амплитуд вынужденных колебаний от частоты воздействия в системе с жесткой нелинейной возвращающей силой. Рис. 3.17. Зависимость <a href="/info/6146">амплитуд вынужденных колебаний</a> от <a href="/info/46907">частоты воздействия</a> в системе с жесткой нелинейной возвращающей силой.
При значениях Р, больших определенного критического значения Ркр. в резонансных кривых появляются участки с вертикальной касательной, и для определенной области значений р возникает неоднозначная зависимость амплитуды вынужденных колебаний от частоты воздействия (тип 2). На рис. 3.25 заштрихована область, где резонансные кривые имеют обратный наклон, а ее границы соответствуют вертикальным касательным к резонансным кривым. Амплитуды резонансных кривых, лежащие в заштрихованной области, неустойчивы, и при непрерывном изменении частоты воздействия р для достаточно больших амплитуд внешней силы появляются скачки амплитуды при  [c.117]

На фиг. 10 представлена зависимость амплитуды вынужденных колебаний от частоты возмущений (при о=1).  [c.201]

Неоднозначность зависимости амплитуды вынужденных колебаний от частоты гармонической вынуждаю-  [c.28]

Проведем краткое исследование движения системы Прежде всего отметим, что вынужденные колебания являются незатухающими простыми гармоническими колебаниями, происходящими с частотой возмущающей силы и По фазе вынужденные колебания отстают от возмущающей снлы на угол ф, величина и знак которого зависят от соотношения между собственной частотой колебания системы шо и частотой возмущающей силы а) Самым существенным является наличие зависимости амплитуды вынужденных колебаний от частоты возмущающей силы  [c.219]

При малых значениях коэффициента вязкости — ту резонансная частота близка к частоте собственных колебаний системы. На рисунке 25.3 изображен график зависимости амплитуды вынужденных колебаний от частоты возмущающей силы (резонансная кривая) при различных значениях коэффициента вязкости р. Острота максимума кривой самым существенным образом зависит от затухания свободных колебаний системы. Для кривых, изображенных на рисунке, р1 > Рг- Для резонансной частоты сдвиг по фазе вынужденных колебаний мало отличается от ф = 90° и вся работа внешней силы затрачивается на преодоление сопротивления движению системы (при установившихся колебаниях). Для частот, сильно отличающихся от частоты собственных колебаний системы, сдвиг фазы не равен 90° и работа внешней силы в отдельные части периода колебаний может быть отрицательной, т. е. система отдает энергию телам, вынуждающим колебания.  [c.220]


Формула (15.4) дает зависимость амплитуды вынужденных колебаний от частоты О внешней силы (рис. 15.1). Видно, что >сзо, если О—>0) .  [c.264]

Представив Р = /(р/ы) графически при различных значениях у (рис. 551), получим так называемые резонансные кривые, наглядно иллюстрирующие зависимость амплитуды вынужденных колебаний от соотношения частот (периодов) свободных и вынужденных колебаний при различных демпфирующих характеристиках системы, определяемых значением коэффициента у.  [c.609]

Проследим зависимость амплитуды вынужденных колебаний от отношения частот p k. Для этого преобразуем выражение. амплитуды вынужденных колебаний  [c.54]

Для установления зависимости амплитуды вынужденных колебаний Ас от частоты изменения возмущающей силы р воспользуемся коэффициентом динамичности ц, введенным в 16. Этот коэффициент представляет собой отношение амплитуды вынужденных колебаний под действием возмущающей силы Q, модуль которой Q = = I + б) , к статическому отклонению точки от начала ко-  [c.58]

Р. с. отдельным атомом (связанным электроном) отличается сильной дисперсией рассеяния. В классич. теории дисперсия объясняется зависимостью амплитуды вынужденных колебаний атомного осциллятора от частоты падающего излучения. Свя-  [c.278]

Зависимость амплитуды Ь (у) установившихся вынужденных колебаний от частоты у вынуждающей силы при различных значениях коэффициента затухания К представлена графически на рисунке 41.1, из которого видно, что все кривые Ь (у) начинаются  [c.227]

Рис. 2.6. Зависимость амплитуд вынужденных колебаний X и от частоты внешней силы (резонансные кривые) Рис. 2.6. Зависимость <a href="/info/6146">амплитуд вынужденных колебаний</a> X и от <a href="/info/267274">частоты внешней</a> силы (резонансные кривые)
Используя метод комплексных амплитуд, найдите решение для вынужденных колебаний линейного гармонического осциллятора без затухания при действии на него внешней гармонической силы. Нарисуйте графики зависимостей амплитуды и фазы вынужденных колебаний от частоты вынуждающей силы.  [c.13]

Проанализируем зависимость характеристик вынужденного колебания от параметров задачи. Частоту вынужденных колебаний, подчеркнем еще раз, задает вынуждающая сила, а их амплитуда и фаза зависят согласно (38.7) и (38.8) как от характеристик вынуждающей силы (Я , П), так и от параметров колебательной системы (т,к,Ь).  [c.127]

Безразмерный коэффициент tj называют коэффициентом динамичности. Он показывает, во сколько раз амплитуда вынужденных колебаний В (т. е. максимальное отклонение точки от центра колебаний) больше статического отклонения Хо, и зависит от отношения частот г. График этой зависимости, определяемой равенством (88), показан ниже на рис. 264 кривой, помеченной знаком h=0 (другие кривые на рис. 264 дают зависимость т от z при наличии сопротивления).  [c.243]

Изменение амплитуды вынужденных колебаний Л в зависимости от изменения частоты возмущающей силы р характеризуется графиком коэффициента динамичности (рис. 37).  [c.47]

Амплитуда вынужденных колебаний не зависит от начальных условий. Но она не зависит также и от времени, а потому вынужденные колебания с течением времени не угасают. Амплитуда (а следовательно, и напряжения, возникающие в упругих системах) зависит от возмущающей силы, главным образом от частоты р. Чтобы выявить эту зависимость, допустим, что упругая механическая система находится в состоянии равновесия и что на нее действует постоянная сила Н. От действия этой постоянной силы система получит так называемое статическое отклонение  [c.281]

Введем амплитуду вынужденных колебаний Aj = hi k — р ). Тогда в зависимости от соотношения между частотами вынужденные колебания можно выразить в двух формах  [c.437]


Главной особенностью вынужденных колебаний при резонансе является зависимость нх амплитуды от времени Лз = / / (2р). Амплитуда вынужденных колебаний в этом случае увеличивается пропорционально времени. Сдвиг фаз при резонансе, как это следует из (43), равен л/2. Круговая частота вынужденных колебаний при резонансе совпадает с круговой частотой возмущающей силы.  [c.438]

Некоторый интерес может представлять и задача о продольном, изгибе стержня, имеющего нелинейные граничные условия. Приводимые ниже исследования показывают, что хорошо известные ранее типично нелинейные свойства одномассовых систем (зависимость собственной частоты системы от амплитуды колебаний,, многозначность амплитуд вынужденных колебаний, наличие скачков , затягиваний и пр.) расширяются и обобщаются соответствующим образом на системы с распределенными массами. В работе будет показано, что задача о колебании балки и задача о критических режимах валов, имеющих нелинейные граничные условия, являются принципиально различными, тогда как известно, что в линейной постановке они совпадают.  [c.5]

Величина так называемого коэффициента усиления р (или динамичности), представляющего собой отношение амплитуды вынужденных колебаний к статическому прогибу, показана на рис. 106 в зависимости от отношения а частот возмущающей силы и свободных колебаний лопатки, а также в зависимости от величины X, называемой коэффициентом демпфирования или сопротивления этот коэффициент зависит от величины сил сопротивления колебаниям.  [c.108]

Режим ШИМ-П лежит в большом диапазоне изменения несущей частоты от частоты /кь при которой золотник перемещается по предельному треугольнику, и далее до частоты f 2, при которой колебания на золотник не проходят. Вопрос о выборе значения несущей частоты для ШИМ-П решается в каждом конкретном случае отдельно в зависимости от динамики электромеханического преобразователя и скоростной характеристики золотника [зависимости V3 = f h)]. Несущая частота должна быть достаточно большой, чтобы золотник имел амплитуду вынужденных колебаний заметно меньшую, чем амплитуда предельного треугольника при частоте / ь С другой стороны, амплитуда колебаний золотника не должна быть слишком малой, так как при этом уменьшаются преимущества импульсного регулирования и возможны случаи схватывания , при котором золотник из-за наличия нагрузок (трение и гидродинамическая сила) останавливается.  [c.487]

Чаще всего силы сопротивления описываются нелинейными функциями скоростей, однако в практических расчетах эти функции иногда можно линеаризовать, считая сопротивление линейно-вязким. Обычно основанием для линеаризации сил сопротивления служит не столько слабая нелинейность истинных зависимостей (в действительности она может быть сильной), сколько заведомо малое влияние сил сопротивления на некоторые колебательные свойства и процессы. Так, в большинстве случаев для расчета частот свободных колебаний достаточно использовать линеаризованные характеристики сил трения, а иногда даже полностью пренебречь сопротивлениями. Силами трения часто можно пренебрегать и при вычислении амплитуд вынужденных колебаний вдали от резонанса.  [c.15]

График Р в зависимости от отношения частот и параметра затухания п приведен на рис. 8.3. Откуда следует, что при со -> ф 0 Sii P> т.е. амплитуда вынужденных колебаний резко возрастает, а при я О, со Ф, получаем i o Sn P -> < Это явление носит название резонанса. При /1 = 0 выражение для р упрощается и принимает вид  [c.160]

Какие колебания называются вынужденными Составьте дифференциальное уравнение вынужденных колебаний. Поясните, как получают решение и каков его физический смысл. Чем определяется амплитуда вынужденных колебаний Нарисуйте графики зависимости амплитуды от частоты вынуждающей силы при двух значениях коэффициента треиия. Что называют резонансом резонансной частотой От чего зависит резонансная частота Будет ли резонансная частота одинакова для одной и той же системы при различных затуханиях Чем определяется сдвиг фазы между смещением и вынуждающей силой Чему равен при резонансе сдвиг фаз между смещением и силой между скоростью и силой Какие системы называются автоколебательными Приведите примеры автоколебательных систем.  [c.354]

Вьшужденные колебания плавающего кольца. Прецессия и радиальные биения вала изменяют толщину жидкостного слоя в щели и создают периодические силы, перемещающие кольцо относительно вала в радиальном направлении. При смещениях, близких к радиальному зазору ho, зависимость гидромеханических сил от перемещений х и у существенно нелинейна, поэтому определение условий бесконтактной работы уплотнения в строгой постановке представляет значительные трудности. Задача существенно упрощается, если рассматривать малые по сравнению с зазором перемещения плавающего кольца, когда гидромеханические силы Р и Ру связаны с перемещениями линейными соотношениями (11.17). В этом случае можно определить резонансные частоты уплотнения и оценить амплитуду вынужденных колебаний кольца относительно вала.  [c.393]

Под действием внешней гармонической силы Р частоты р, приложенной к одному из связанных маятников (рис. 386), оба маятника будут совершать гармонические вынужденные колебания с частотой р. Амплитуды колебаний каждого из маятников, так же как и прн вынужденных колебаниях с одной степенью свободы, будут зависеть от частоты, причем эта зависимость особенно резко выражена при малом затухании. Резонанс колебаний, или колебания обоих маятников с максимальной амплитудой, будет наблюдаться тогда, когда одна из собственных частот связанных маятников равна частоте внешней силы. Аналогично для системы из п маятников резонанс будет наблюдаться при /г значениях частоты внешней силы.  [c.468]

Наиболее существенные особенности нелинейных колебательных систем возможность существования нескольких положений равновесия неизохронность свободных колебаний, неоднозначность зависимости амплитуды вынужденных колебаний от частоты гармонической вынуждающей силы возникновение супер- и субгармони-  [c.25]


Наиболее важной и интересной является зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы А(П). определяемая формулой (38.7). При 1 = 0 с учетом (36.4) А 0) = рц1к при П->оо 1(П)->0 экстремумы функции /1(П) определяются из условия <Ы1ЫС1 = О, но достаточно приравнять нулю производную подкоренного выражения в (38.7), так как его экстремумы совпадают с экстремумами  [c.127]

Решение. Эта задача относится к задачам определения амплитудно-фазовых частотных характеристик. АФЧХ показьтают, как зависит амплитуда вынужденных колебаний от частоты внешнего воздействия и как сдвигается фаза вынужденных колебаний в зависимости от частоты внешних сил [23].  [c.54]

Для вынужденных колебаний в линейной колебательной системе в области резонанса это сразу видно из полученных выше зависимостей амплитуды и фазы вынужденных колебаний от частоты виеншей силы (графики этих зависимостей приведены на рис. 388 и 389). Вследствие сильной зависимости амплитуды и фазы вынужденных колебаний от Частоты, соотношение между амплитудами и фазами разных гармоник в спектре внешней силы н в спектре вынужденных колебаний нарушается и форма вынужденных колебаний может очень существенно отличаться от формы внешней силы. Пример этого был приведен выше для маятника, раскачиваемого толчками, при малом затухании форма вынужденных колебаний будет близка к гармонической.  [c.621]

Эти высшие гармонические компоненты достаточно малы пока система для данной амплитуды колебаний слабо нелинейна, но возрастают по мере роста амплитуды вынужденных колебаний. Если частота одной из возникших за счет нелинейности системы гармонических компонент близка к собственной частоте колебаний системы, то амплитуда этой компоненты может существенно возрасти. В итоге при исходной гармонической вынуждающей силе результирующий колебательный процесс может иметь характер весьма далекий от гармонического с резким увеличением амплитуды тех компонент, частоты которых лежат в резснансной области. При этом, естественно, от вида нелинейных зависимостей (тип нелинейности) существенно зависит возможный характер результирующего процесса.  [c.107]

Нелинейность деформационных свойств резин проявляется и в области резонансных частот гармонического нагружения, близких к собственной частоте колебаний системы. Нелинейность выражается в аномальной (со скачком) зависимости амплитуды перемещения вынужденных колебаний от частоты со (рис. 3.3.8), наблюдаемой вместо симметричных относительно максимума кривых для линейных систем (см. рис. 1.3.5). Обычно нелинейные соотношения сг — 8 выражены кривыми, вогнутыми к оси напряжений а. При увеличении частоты со амплитуда постепенно возрастает по АВ (см. рис. 3.3.8), достигая максимума <7 при соДалее наб.тю-дается скачок амплитуды, и при увеличении со экспериментальные данные попадают на кривую EF. При уменьшении частоты со ход кривой не совпадает с полученным при увеличении со, а именно кривая проходит по FED до точки D при Wj, а с дальнейшим умень-гаепие>[ со происходит скачок амплитуды из D в 5 и последующее  [c.162]

Ддя установления зависимости амплитуды вынужденных колебаний Аг от частоты изменения возмущающей сялы р воспользуемся коэффициентом динамичности IJ, введенным в 16. Этот коэффициент представляет собой отношение амп.питуды вынужденных колебаний под действием возмущаюш,еЙ силы О модуль которой Q = Я sin (pt + (5)1, к статическому отклонению тонки от начала  [c.317]

Принцип язычкового частотомера можно использовать для демонстрации полученных нами зависимостей амплитуды и фазы вынужденных колебаний от соотношения между частотами собственных и вынужденных колебаний. Если взять два язычка, один нз которых имеет собственную частоту, точно равную 100 пер сек, а другой имеет частоту, отличающуюся на десятые доли периода, то при возбуждении электромагнита переменным токам в 50 nepj eK ) возбудятся оба язычка (рис. 390). Однако  [c.608]

РЕАКЦИЯ [термоядерная — реакция слияния легких атомных ядер в более тяжелые, происходящие при высоких температурах 10 К фотоядерная- -расщепление атомных ядер гамма-квантами цепная — реакция деления атомных ядер тяжелых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления ядерная — превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, в том числе с гамма-квантами, или друг с другом] РЕВЕРБЕРАЦИЯ — процесс постепенного затухания звука в закрытых помещениях после окончания действия его источника РЕЗОНАНС (есть явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынужденной силы к собственной частоте колебаний системы акустический — избирательное поглощение энергии фононоБ определенной частоты в парамагнитных кристаллах, помещенных в постоянное магнитное поле антиферромагнитный — избирательное поглощение энергии электромагнитных волн, проходящих через антиферромагнетик, при определенных значениях частоты и напряженности приложенного к нему магнитного поля гигантский — широкий максимум, которым обладает зависимость сечения ядерных реакций, вызванных налетающей на атомное ядро частицей или гамма-квантом, от энергии возбуждения ядра магнитный — избирательное поглощение энергии проходящих через магнетик электромагнитных волн на определенных частотах, связанное с переориентировкой магнитных моментов частиц вещества параметрический — раскачка колебаний при периодическом изменении параметров тех элементов колебательных систем, в которых сосредоточивается энергия колебаний)  [c.271]

При вынужденных колебаниях во избежание резонанса собственная частота системы не должна совпадать по величине и фазе с вынужденной частотой. Для оценки виброустойчивости системы применяют амплитудно-фазовый частотный метод. Он заключается в сообщении, например, шпинделю станка периодических вынужденных колебаний от генератора колебаний (рис. 217, а) и в записи на осциллограмме при помощи вибродатчика колебаний системы. Они, как правило, отличаются по амплитуде и по фазе от колебаний генератора (рис. 217, в). При периодическом изменении частоты генератора сравнивают амплитуды колебаний на входе. и выходе системы Лвых/ вх и сдвиг колебаний по фазе ср. Затем строят амплитудную Лвых/ вх =/(ю) и фазовую ф =/,((о) характеристики в зависимости от частоты колебаний ю (рис. 217, г). Совмещение амплитудной и фазовой частотных характеристик в иррациональной 1т и реальной Rg координатах позволяют получить амплитудно-фазовую частотную характеристику АФЧХ (рис. 217, д). Радиус-вектор кривой АФЧХ характеризует отношение амплитуд, а угловое положение ф относительно положительного направления оси Re — угол сдвига фаз колебаний. Значение —1 на вещественной оси Re означает совпадение амплитуд колебаний и сдвиг по фазе ф == 180 -Это соответствует резонансу. Для устойчивости упругой системы необходимо, чтобы кривая АФЧХ не охватывала —1 на оси R .  [c.307]

Вынужденные колебания нелинейной системы, описываемой уравнением Дуффинга, исследовать столь просто не удается. И поныне это уравнение исследовано не полностью. Без особого труда удастся исследовать только случай малых затуханий б и а > 0. Резонансные кривые имеют при этом вид, показанный на рис. 1.11, и отличаются от резонансных кривых линейного осциллятора (рис. 1.10) наклоном ника и появлением неодноднознач-ности. Наклон происходит влево или вправо в зависимости от знака величины Ь в уравнении Дуффинга (1.18). Этим наклоном и неоднозначностью вызывается известное явление гистерезиса амплитуды вынужденных колебаний при медленном изменении частоты V внешней силы. Опо состоит в скачках амплитуды и том, что эти скачки происходят  [c.16]



Смотреть страницы где упоминается термин Зависимость амплитуды вынужденных колебаний от частоты : [c.237]    [c.361]    [c.547]    [c.77]    [c.219]    [c.430]    [c.55]    [c.310]    [c.181]   
Смотреть главы в:

Механика Изд.3  -> Зависимость амплитуды вынужденных колебаний от частоты



ПОИСК



Амплитуда

Амплитуда вынужденных зависимость от частоты

Амплитуда вынужденных колебани

Амплитуда колебаний

Амплитуда колебаний вынужденных

Зависимость от частоты

Колебания вынужденные

Частота вынужденных колебаний

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте