Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности формирования излучения ЛПМ

Особенности формирования излучения ЛПМ  [c.107]

При фокусировании луча ОКГ цилиндрической оптикой [13] можно получать профиль обработанного материала, отличный от круга. Такой способ формирования излучения обеспечивает получение зоны лазерного воздействия в материале в виде полосы определенной длины и ширины, зависящих от параметров оптики (рис. 34). Особенно эффективно использование этого способа при упрочнении различных протяженных изнашивающихся острых кромок деталей машин и металлорежущих инструментов.  [c.55]


Для решения основной задачи необходимо из допустимых погрешностей расчета абсолютных значений характеристик поля излучения за защитой определить допустимые погрешности расчетных параметров защиты. К таким параметрам относятся кратности ослабления функционалов поля излучения защитой или их значения в защите для источника излучения единичной мощности. В качестве основной характеристики защиты выберем кратность ослабления дозы или любого другого функционала с аналогичными особенностями формирования пространственных распределений. Анализ максимальных мощностей известных источников нейтронного и у-излучения позволяет установить соотношение между значением дозы (и допустимой погрешностью ее определения) и максимальной кратностью ослабления дозы защитой, за которой такая доза может реализоваться на практике. Установленное соответствие позволяет выявить зависимость допустимой погрешности оценки дозовых нагрузок за защитой от кратности ослабления дозы нейтронного или первичного у-излучения (рис. 1). Полученная зависимость характеризует допустимые значения полной погрешности расчета, которую определяют неопределенности задания источника излучения, геометрии установки, функции отклика детектора, а также методическая и константная составляющие погрешности расчета.  [c.287]

В настоящей главе рассматриваются особенности формирования дифракционного отражения мягкого рентгеновского излучения в кристаллах в соответствии с терминологией, применяемой в рентгеновской кристаллооптике [3, 7, 37, 52], обсуждаются требования, предъявляемые к кристаллическим дифракционным диспергирующим элементам, приводятся практические сведения  [c.302]

Появление лазеров стимулировало развитие теории распространения световых пучков. В классической оптике [77] были подробнее всего изучены особенности формирования изображений при наличии аберраций, связанных как с большой светосилой применяемых устройств, так и со значительной шириной спектрального диапазона излучения. Для анализа процессов в лазерных резонаторах необходимо лишь знание законов преобразования волновых фронтов когерентных пучков. Кроме того, элементы резонатора обычно обладают небольшой оптической силой, лазерные же пучки имеют узкий спектр, малую расходимость и умеренные размеры сечения. Поэтому в лазерном резонаторе привычные для классической оптики аберрации практически отсутствуют в частности, здесь обычно стерта грань между сферической и параболической формами поверхностей оптических элементов.  [c.7]


Из рассмотренных выше способов формирования зон лазерного воздействия видно, что наиболее просто процесс упрочнения излучением лазера может быть реализован при фокусировании излучения сферической и цилиндрической оптикой. Однако в случае использования импульсного излучения формирование профиля имеет ряд особенностей в зависимости от вида оптики.  [c.59]

Анализу многих этих факторов с точки зрения формирования температурного поля и связи его с интенсивностью и особенностями излучения посвящен целый ряд работ [Л. 4, 6, 7, 16, 19, 20, 32, 40, 44, 46, 77, 78, 81, 84, 113, 121, 123, 130, 171, 180 и др.].  [c.354]

Газовые нелинейные среды позволяют преобразовывать в видимую область не только сигнал, но и изображение [146, 231]. Общая теория формирования изображения практически такая же, как и в случае твердотельных нелинейных сред, поскольку и в газовом варианте амплитуда волны суммарной частоты зависит от амплитуды ИК-излучения линейным образом. Некоторые особенности преобразования, связанные с неоднородностью плотности атомов, рассмотрены в [146]. Достигнутые в эксперименте [231—233] параметры преобразователя 300, Т1ф 10 % при Air = 2,2, 2,94 мкм, Тр = 10 Вт см" ) позволяют сделать вывод о перспективности использования газовых нелинейных сред [253].  [c.142]

Рубиновые лазеры обеспечивают излучение практически во всех временных режимах работы в режим ё свободной генерации, модулированной добротности и синхронизации мод [54, 39]. Каждый из указанных режимов работы реализуется направленным воздействием на динамику формирования импульса излучения в резонаторе лазера и имеет свои отличительные особенности. В режиме свободной генерации обеспечиваются наиболее высокие уровни энергии излучения при наибольших значениях- КПД, в режиме модулированной добротности — наиболее высокие уровни импульсной мощности излучения при несколько меньших значениях КПД, в режиме синхронизации мод — сверхвысокие уровни импульсной мощности излучения при сверхкоротких импульсах.  [c.161]

Механизм формирования отражательной голограммы, обсуждаемый в данной работе, основан на первоначальном наличии в объеме ФРК встречной волны, отраженной от неоднородностей в объеме образца и на его задней грани. Далее эти отраженные волны претерпевают усиление за счет энергообмена на записываемой голограмме отражательного типа [9.61 ], что и приводит в конечном итоге к образованию в объеме ФРК своего рода эффективного многослойного зеркала, настроенного в резонанс с генерируемой длиной волны. Предполагается, что автоматический выбор оптимальной формы такого зеркала, приводящий к наблюдаемому сужению углового спектра излучения лазера, связан с положительной обратной связью через активный элемент и переднее зеркало резонатора. Отметим, что здесь, по-видимому, требуются более подробные исследования, особенно в связи с указаниями авторов на то, что формируемое в данном случае отражательное зеркало не обладает свойством обращения волнового фронта.  [c.232]

Формулы, определяющие поле излучения, не только дают возможность вычислить характеристики излучения открытого конца волновода, но и позволяют создать наглядную картину формирования диффракционного поля с выявлением особенностей, остававшихся ранее незамеченными образование волн, расходящихся от краев, влияние внешней поверхности волновода на излучение и т. д. (см. гл. V).  [c.195]

Из экспериментов известно, что технические характеристики и особенности прецизионной лазерной резки тонких металлических пластин определяются в целом теми же условиями и факторами, что и технические характеристики процессов многоимпульсного лазерного сверления. Средняя ширина сквозного реза в тонких металлических пластинах обычно составляет 30-50 мкм на всей длине образца, стенки их практически параллельны, поверхность не содержит крупных дефектов и инородных включений. Одной из особенностей резки импульсным излучением является возможность так называемого эффекта канализации. Этот эффект выражается в увлечении качественного (дифракционного) пучка в сформированный предыдущими импульсами канал посредством переотражения от его стенки. Формирование нового канала начинается после смещения всего дифракционного пучка за контуры предыдущего. Этот процесс определяет предельную шероховатость стенки реза и может стабилизировать точность реза за счет компенсации нестабильности диаграммы направленности при многопроходной обработке. При этом шероховатость кромок реза обычно не превышала 4-5 мкм, что можно считать вполне удовлетворительным. И следует ожидать, что при уменьшении погрешности позиционирования осей координатного стола XY на порядок (до 1 мкм) будет достижим уровень шероховатости в 1 мкм (при условии высокой стабильности оси диаграммы направленности).  [c.254]


Особенность импульсного плазменного генератора с лазерным поджигом заключается в том, что формирование плазменной струи происходит в объеме, заполненном плазмой, созданной излучением лазера. Это оказывает влияние на ускорение как плазменной струи, созданной непосредственно импульсным разрядом, так и плазменной струи, образующейся за счет лазерного излучения. При прохождении тока разряда через плазму, образующуюся в результате лазерного воздействия, происходит дополнительный разогрев плазмы, что приводит к увеличению скорости истечения плазменной струи. При этом следует учитывать эффект дополнительного ускорения плазменной струи вследствие воздействия электродинамических сил. Образующаяся плазменная струя в целом подогревается лазерным излучением, так как длительность излучения перекрывает длительность разряда.  [c.269]

Различные типы сканирующих систем, исходя из решаемой задачи, отличаются друг от друга размерами элементарной детектирующей ячейки и соответственно размерами блока детектирования, величиной энергии зондирующего излучения, а также особенностями конструкции, обусловленными способом формирования изображения.  [c.635]

Лазерная сварка устраняет указанные трудности и обеспечивает высокое качество сварных соединений. Технология сварки магниевых сплавов принципиально не отличается от сварки алюминиевых сплавов. Перед сваркой соединяемые кромки следует протравить или зачистить шабером до блеска. Применение лазерного излучения обеспечивает хорошее формирование швов при сварке на весу, т.е. в отличие от дуговой сварки не требуется применение подкладок. Это значительно упрощает технологию изготовления сварных конструкций, особенно крупногабаритных.  [c.434]

В рентгенодефектоскопических аппаратах используют трубки, различные по конструкции и способам получения и формирования пучка излучения. Выбор рентгеновской трубки для конкретных условий контроля определяется его схемой, конструктивными особенностями просвечиваемого объекта, его материалом, толщиной и т.д.  [c.254]

При несимметричной схеме питания под антенной необходимо проложить заземление (рис. 16.49,6). Непосредственно под вибраторами заземление выполняется из густой сетки проводов. Оно обеспечивает отсутствие потерь при возбуждении вибратора и требуемое значение его входного сопротивления. Кроме того, однолинейная сетка проводов покрывает область, активно участвующую в формировании диаграммы направленности. Наличие этой сетки позволяет существенно увеличить интенсивность излучения под низкими углами к горизонту, что особенно важно ввиду малой высоты антенны. Густую сетку целесообразно размещать над землей во избежание скопления на ней снега, грязи и т. п.  [c.380]

Деление функционального процесса на этапы является необходимой предпосылкой для проведения экспертизы, цель которой — детальная проверка функционирования изделия на этапах процесса, осуществляемая с привлечением в необходимых случаях испытуемых. Задачи такой экспертизы качественно отличны от тех задач, которые ставятся при испытаниях изделия на прочность, надежность, безотказность, проводимых в испытательных центрах или в специальных лабораториях, на полигонах. Задачи эксперимента заключаются в том, чтобы воспроизвести с необходимой точностью реальный ход функционального процесса в том виде, как он протекает в сфере потребления. И не только воспроизвести, но и зафиксировать все те его особенности, с которыми сталкиваются потребители изделия. При этом объект экспертизы исследуется по трем уровням, охватывающим излучение процессов жизнедеятельности потребителя, потребительско-ценностных отношений и социально-культурных критериев. Конечной же целью такого условного деления объекта на уровни является синтез полученных результатов с целью формирования у эксперта целостного представления об изделии как предметно-чувственном объекте человеческих действий, интересов и ценностно-культурных ориентаций.  [c.114]

Многочисленные экспериментальные данные указывают на то, что при рассмотрении динамики накопления поврежденности материала и формирования очага разрушения необходимо учитывать коллективные явления, проявляющиеся во взаимном влиянии микродефектов. Известен ряд работ, рассматривающих характерные особенности коллективного поведения дефектов, когда наблюдаемые АЭ-сигналы зависят не только от вида источника, но и от условий взаимодействия совокупности дефектов. В соответствии с этим строятся математические модели, связывающие эволюцию дефектной структуры с параметрами наблюдаемой АЭ. Основой для разработки моделей АЭ при коллективном поведении микродефектов твердых тел может служить кинетическая теория разрушения. Эта теория рассматривает процессы возникновения, накопления и эволюции микродефектов в материалах, а также формирование из микродефектов очага разрушения - макротрещины. Все эти процессы сопровождаются излучением акустической эмиссии. При математическом моделировании предполагается, что зарождение в материале микротрещины приводит к разгрузке близлежащего объема, что сопровождается излучением импульса АЭ.  [c.175]

Метод исполь.зует особенности формирования индикатрис рассеяния (ИР) продольных и поперечных волн для дефектов различного типа. В качестве примера на рис. 5.39 показаны некоторые ИР для несплавлений. Излучение осуществлялось преобразователем с переменным углом ввода, D p = 18 мм, / = 1,8 МГц углы падения поперечных волн у = 50° < 7 рз (сплошные линии), Y = 57° = 7крз (штрихпунктирные линии), 7 = 65° > 7 рз (штриховые линии). Поле продольных волн исследовалось точечным приемником на обеих поверхностях образцов. На основании анализа ИР трансформированных продольных волн можно выделить следующие закономерности. ИР состоят из двух лепестков максимум нижнего лепестка расположен под углом фн 10. .. 20°, максимум верхнего лепестка при фа = 180°. Физическая природа образования обоих лепестков различна. Верхний лепесток образуется в результате трансформации поперечной волны, падающей на острый край несплавления. Видно, что, если не считать небольшого подъема при Я = 6 мм, амплитуда краевой волны остается почти постоянной.  [c.268]


Решение уравнения переноса излучения в защитах реакторов с помощью AWLM— № 1.0-схемы (263). Применение метода Монте-Карло для расчетов токов вкладов в защите реакторов (268). Весовые функции усреднения групповых констант (272). Учет воздушных полостей в защите реакторов в рамках метода выведения — диффузии (278). Особенности формирования поля быстрых нейтронов, рассеянных от стенок прямого канала (282). Потребности в ядерных данных в задачах расчета биологической защиты (286). Аналитическое описание замедления резонансных нейтронов (292). Поля замедлившихся нейтронов и вторичного v-излучения в прямом бетонном канале с источником быстрых нейтронов на входе (296). Функции влияния поглощающего цилиндрического источника (299). Расчет источников захватного Т Излучения в однородной среде и у границы раздела двух сред комбинированным методом (307). Квазиальбедо нейтрон — V-квант (309). Ковариационные матрицы погрешностей для элементов конструкционных и защитных материалов ядерно-технических установок (311). Скайшайн нейтронов н фотонов. Обзор литературы (320).  [c.336]

При сварке деталей толщиной более 1,0 мм на проплавляющую способность луча в первую очередь влияет мощность излучения. Поскольку сварка таких деталей ведется при непрерьрном излучении, то к основным параметрам режима здесь относится и скорость сварки. При выбранном значении мощности излучения скорость сварки определяют исходя из особенностей формирования шва минимальное значение скорости ограничено отсутствием кинжального проплавления, а максимальное - ухудшением формирования шва, появлением пор, непроваров. Скорость сварки может достигать 90...110 м/ч.  [c.240]

Результаты расчета функции гэ(Тст. Тел, Всл) и срзЕнение их с экспериментальными данными позволяют по-новому оценить роль лучистого теплообмена при переносе энергии в псевдоожиженном слое. Как правило, считается, что радиационный теплообмен несуществен до температуры порядка 1000 °С, особенно для мелких частиц [180]. Такое заключение можно сделать исходя из сравнения потоков энергии, которые передаются от слоя к поверхности различными механизмами переноса [127, 50]. В то же время обработка экспериментальных данных (см. рис. 4.16) показывает, что при сравнительно низких температурах ( ст = 300°С, сл = = 600 °С) в слое мелких частиц (d = 0,32 мм) распределение температуры вблизи поверхности теплообмена опре-леляетгя радиационным переносом. Учитывая это, необходимо уточнить условия, при которых роль излучения в формировании распределения температуры вблизи поверхности будет существенна.  [c.183]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

Другой интересной особенностью таких одномерных голограмм Френеля является то, что при их восстановлении выполняется скользящее одномерное дискретное преобразование Френеля, т. е. на каждом шаге преобразования находится один коэффициент Френеля фрагмента строки исходного сигнала, соответствующий главному направлению излучения при формировании голограм ш, затем фрагмент смещается относительно предыдущего па 1 элемент, выполняется следующий шаг преобразования и т. д.  [c.169]

Прист>тшм теперь к рассмотрению наиболее важных источников высококогерентного узко направленного излучения — лазеров. Как известно, их действие основано на способности некоторых сред в определенных условиях усиливать проходящее через них световое излучение. Поэтому, безусловно, роль свойств применяемой активной среды и способа ее возбуждения велика однако пространственная и временная когерентность излучения решающим образом зависит от свойств резонансной системы, в которую эта среда помещена. Особенно очевидной является определяющая роль резонатора в процессах формирования узконаправленных пучков пока его нет, сама по себе активная среда способна, как правило, с равным успехом усиливать проходящее через нее излучение, в каком бы направлении оно не распространялось.  [c.60]

Полученные результаты позволяют перейти непосредственно к синтезу алгоритмов распознавания и анализу их эффективности. Естественно, что для распознавания особое значение имеет информация, закодированная в пространственной структуре лазерного излучения, по которой можно судить о форме лоцируемой цели и о характеристиках ее поверхности, В повседневной практике подобная информация получается непосредственно из анализа оптических изображений. Однако в лазерной локации даже тогда, когда влияние турбулентной атмосферы оказывается незначительным, формируемое изображение настолько отличается от обычного (см. гл. 2), что воспользоваться известными алгоритмами оказывается возможным лишь при весьма существенном их усовершенствовании. В общем случае оптимальная обработка приводит к более сложным операциям нежели формирование изображения, что естественно усложняет вид той информации, которая поступает на вход алгоритмов распознавания. Отмеченные особенности предъявляемой для распознавания информации, обладающей к тому же ярко выраженным статистическим характером, приводят к необходимости при синтезе алгоритмов распознавания опираться на основные принципы теории статистических решений.  [c.132]

Особенно быстрые релаксационные процессы наблюдаются также при колебательных переходах в конденсированной фазе. Методы измерения времен продольной и поперечной релаксации Тит колебательных переходов в жидкостях и твердых телах были впервые разработаны Кайзером, Лоберо и сотр. [9.32, 9.45, 9.46], а также Альфано и Шапиро [9.47]. Подходящими для этого оказались различные процессы комбинационного рассеяния. Так, для измерения времени релаксации энергии Т образец возбуждался коротким одиночным импульсом с частотой вынужденного комбинационного рассеяния формировался стоксов импульс с частотой (os=(Ol—ojm и молекулы из основного колебательного состояния переводились в первое возбужденное колебательное состояние с энергией Й(Ом- Для регистрации наличия возбужденных молекул использовался слабый световой импульс с частотой 2 ыь- Наряду с другими процессами этот импульс вызывал в образце спонтанное некогерентное комбинационное рассеяние. Регистрируется вызванное возбужденными молекулами антистоксово рассеяние на частоте 0а = 2 , + (омИнтенсивность этого излучения пропорциональна населенности возбужденного колебательного уровня. Время Т может быть определено по зависимости спада интенсивности антистоксова сигнала от времени задержки между обоими импульсами (рис. 9.17). Аналогичным образом может быть измерено и время т. При этом используется то, что процесс вынужденного комбинационного рассеяния сопровождается не только изменением населенностей, но одновременно образованием интенсивной волны поляризуемости с частотой (Ом и волновым вектором —kg. Формирование этой когерентной волны протекает аналогично тому, как это имеет место при однофотонных явлениях, описанных в п. 9.1.2. После прохода световых импульсов волна поляризуемости распадается с временем релаксации фазы т. Эта релаксация может быть зарегистрирована при помощи когерентного антистоксова  [c.347]


В книге затронут весьма широкий круг вопросов. Сначала дается сжатое изложение истории развития наших представлений о строении вещества и особенно интересно рассказывается о постепенном проникновении науки в мир атома открытие радиоактивности, познание строения атома и, наконец, формирование обширной области науки — ядерной физики. Затем в обш,едоступной форме излагаются современные методы изучения ядерных реакций, получение частиц большой энергии для бомбардировки атомного ядра и вопросы, связанные с делением тяжелых ядер, в конце концов приведших к осуществлению цепной реакции. Открытие цепной реакции явилось основой для построения ядерных реакторов и создания атомной бомбы. В наглядной форме описываются конструкции ядерных реакторов, а также основные принципы действия атомных и водородных бомб. Много места автор уделяет описанию разнообразных применений атомной энергии в мирных целях и их перспективам в будущем (электростанции на ядерном горючем, ракетные двигатели, метод меченых атомов, биологическое и медицинское использование ядерных излучений и т. д.).  [c.3]

Малая длительность импульса обуславливает условия, когда несуще-ственно насыщение процесса ионизации, что особенно важно при большой вероятности ионизации в сверхсильном поле. Возможно, что формирование аттосекундных импульсов, используя высокие гармоники лазерного излучения (см. гл. XI), представляет собой многообещающее направление в развитии источников излучения, необходимых для проведения экспериментов при атомной и сверхатомной напряженности поля.  [c.290]

Интенсивность подвода тепла от горячих газов к охлаждаемой стенке меняется вдоль оси камеры. Наибольший тепловой поток поступает в стенку в зоне самого узкого, так называемого критического сечения, наименьший — вблизи выходного сечения. Вдоль оси камеры существенно меняется также и давление газов наибольшее в камере сгорания, наименьшее — у соплового среза. В соответствии с изменением тепловых параметров газового потока должны в определенной мере меняться и проходные сечения в тракте охлаждающей жидкости, а формирование системы охлаждения в целом, особенно для больших камер, часто подчиняется зоналыюму принципу для сопла — одно, для камеры сгорания — другое. В частности, из схемы, показанной на рис. 3.10, видно, что охлаждающий сопло водород движется от соплового коллектора только до некоторого промежуточного сборника и, уже будучи достаточно нагретым, поступает к газогенератору, а для охлаждения самой камеры сгорания подводится новая свежая порция холодного водорода. Для сопел большого расширения, применение которых характерно для космических двигателей, работающих в вакууме, от проточного охлаждения выходной части сопла можно и вовсе отказаться тепловой поток сравнительно невелик, и охлаждение происходит за счет излучения. Охлаждающий компонент в таких случаях подводится к коллектору, расположенному поодаль от соплового среза. Тогда длина охлаждающего тракта сокращается и уменьшаются гидравлические потери.  [c.126]

Дальнейшие усовершенствования программы FIELDAY будут проводиться в направлении совершенствования физических моделей, повышения быстродействия и улучшения удобства пользования. Хорошо известно, что некоторые виды ионизирующего излучения при попадании на полупроводниковую микросхему могут привести к ошибкам в ее работе. Учет в исходной модели, используемой в программе FIELDAY, влияния а-частиц позволит оценить вклад таких процессов, как глубокая ионная имплантация, на степень чувствительности к ошибкам. Учет в этой программе усовершенствованных моделей подвижности, особенно поверхностной, значительно улучшит результаты анализа порогового режима полевых транзисторов. Время счета будет непрерывно снижаться в результате разработки и использования новых методов решения систем линейных уравнений, возможно, с помощью новых ЭВМ с векторным процессором. Нужно создать базу данных, которая позволит лучше организовать связь между программами препроцессора, программами моделирования технологических процессов, расчета физических процессов в приборе, схемотехнических моделей и программами постпроцессора. В новой базе данных будет храниться вся входная и выходная информация. В разработке сервисной части пакета FIELDAY будет также учтен и человеческий фактор, т. е. вопрос удобства пользователя. С этой целью упростится работа по формированию конечно-элементной структуры. Нужно разработать подходящие методы визуализации и интерпретации результатов, особенно для трехмерных моделей.  [c.487]

Все выделенные Н.И. Вавиловым центры формирования культурных растений находятся в тропической и субтропической зонах и приурочены к горным массивам или плоскогорьям. Особенно большое разнообразие растительных форм в горных и уединенных районах иа первый взгляд трудно объяснить, так как условия для возделывания сельскохозяйственных культур здесь не лучшие. Однако, с другой стороны, эти условия благоприятствуют изменчивости. Данные районы характеризуются резкими колебаниями температуры, большими различиями в увлажнении и неодинаковыми почвенными разностями на разных высотах, а также повышенным ультрафиолетовым и космическим излучением. Все эти факторы, особенно если они действуют на растения в крайней форме при больших суточных колебаниях, могут вызывать появление мутантов с новыми, наслед-  [c.103]

По лёгкости намагничивания и перемагничивания М. м. подразделяют на магнитно-твёрдые материалы и магнитно-мягкие материалы. В отд. группы выделяют термомагнитные сплавы, магнитострикционные материалы, магнитодиэлектрики и др. спец. материалы. Создание более совершенных М. м. связано с примене-ниелг всё более чистых исходных (шихтовых) материалов и с разработкой новой технологии производства (вакуумной плавки и др.). Улучшение крист, и магнитной текстуры М. м. позволяет уменьшить потери энергии в них на перемагничивание, что особенно важно для электротехн. сталей. Формирование спец. вида кривых намагничивания и петель гистерезиса возможно при воздействии на М. м. магн. полей, радиоактивного излучения, нагрева и др. физ. факторов. Для создания высококачеств. М. м. (напр., магнитно-мягких материалов с большой индукцией насыщения и с малой шириной магнитного резонанса) перспективны РЗЭ. Разрабатываются М. м., в к-рых магн. св-ва сочетаются с необходимыми электрич., оптич. и тепловыми св-вами.  [c.376]


Смотреть страницы где упоминается термин Особенности формирования излучения ЛПМ : [c.128]    [c.446]    [c.168]    [c.431]    [c.139]    [c.15]    [c.60]    [c.203]    [c.9]    [c.121]    [c.160]   
Смотреть главы в:

Лазеры на парах меди - конструкция, характеристики и применения  -> Особенности формирования излучения ЛПМ



ПОИСК



Формирование



© 2025 Mash-xxl.info Реклама на сайте