Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтоново описание квантовой механики

Плодотворность идей Гамильтона наглядно подтверждается всем ходом развития динамики. В частности, функция Гамильтона явилась, как известно, одним из основных понятий, используемых в квантовой механике, несмотря на то, что математический аппарат квантовой механики и физическая интерпретация явлений микромира существенно отличны от тех, которыми мы пользуемся для описания макроскопических процессов.  [c.36]


В предыдущем параграфе при исследовании взаимодействия электронов с колебаниями ионов мы описывали поляризацию кристалла на основе классической электродинамики. Чтобы перейти к квантовому описанию, надо найти гамильтониан системы продольных оптических фононов, взаимодействующих с электроном. Для этого вначале найдем явный вид классической функции Гамильтониана как функции обобщенных координат и сопряженных к ним импульсов, а затем перейдем к операторам квантовой механики.  [c.256]

Отсюда видно, что уравнение (37.31), а вместе с ним и уравнение Шредингера (37.27) при ЙО переходят в уравнение Гамильтона — Якоби (37.2). Существование предельного перехода от уравнения Шредингера к уравнению Гамильтона — Якоби и дает основание рассматривать механику Ньютона как предельный случай более общей квантовой механики, пригодной для описания движения как микроскопических, так и макроскопических объектов.  [c.213]

Обычно в квантовой электродинамике используется описание поля с помощью операторов рождения и уничтожения фотонов а , 0]с, независящих от времени (шредингеровское представление). При этом конечным результатом квантовой теории рассеяния, который сравнивается с экспериментом, является вероятность перехода в единицу времени или сечение рассеяния. В 6.1 будет использован этот традиционный для квантовой механики путь, на основании которого в 6.2 и 6.3 будут рассчитаны основные энергетические характеристики ПР. Рассмотрение общих статистических свойств рассеянного поля будет проведено в 6.4 с помощью уравнений Гейзенберга для (t) и эффективно трехфотонного гамильтониана. В результате моменты поля рассеяния будут определены через квадратичную матрицу рассеяния (МР) в духе обобщенного закона Кирхгофа (ОЗК).  [c.175]

Описание различных свойств операторов тл. и собственных функций гамильтониана (2.25) можно найти в любом стандартном учебнике квантовой механики [4].  [c.37]

Второе применение рассматриваемого метода относится к квантованию полей. Мы знаем, что переход от классической теории к квантовой можно осуществить через канонические переменные системы. Мы отмечали, что классическим скобкам Пуассона от функций канонических координат соответствуют при этом квантовые коммутационные соотношения. В сущности, мы только тогда умеем квантовать систему, когда можем говорить о ней на языке механики. Поэтому, если мы хотим построить квантовую теорию электромагнитного или какого-либо другого поля, то сначала нужно получить его описание на языке механики. Основу для такого описания дают методы Лагранжа и Гамильтона, изложенные в этой главе,  [c.399]


Основной особенностью динамики Гамильтона является ее структура, которой определяется и изящество этой теории, и ее широкая применимость. Эта структура является обш ей для классических и квантовых систем. В данной главе мы дадим обзор классической и квантовой динамики, специально подчеркивая соответствуюш ие структурные аспекты. Для понимания статистической механики важно хорошо чувствовать ее структуру, чтобы проследить за тем, где и как на окончательной стадии теряется гамильтонов характер описания.  [c.16]

Смешанные квантовые ансамбли. Описание многочастичных систем на основе решения уравнения Шредингера является столь же безнадежной задачей, как и описание классических многочастичных систем на основе решения уравнений Гамильтона. С математической точки зрения ясно, что точные решения уравнения Шредингера в большинстве случаев не могут быть получены в явном виде. Физическая же причина невозможности динамического описания состоит в том, что невозможно экспериментально привести макроскопическую систему в чистое квантовое состояние. Кроме того, реальные системы не являются полностью изолированными и в гамильтониане никогда не удается учесть вклад всех степеней свободы, связанных с внешним воздействием на систему. Поэтому в квантовой статистической механике приходится вводить ансамбли более общего типа, чем чистые ансамбли, а именно, — смешанные ансамбли (или смеси ), которые основаны на неполном наборе данных о системе.  [c.26]

Работа состоит из шести глав. Первая глава посвящена разбору возможностей, предоставляемых классической механикой для решения названной основной задачи, и критике относящихся сюда работ, основанных на классической механике. Вторая глава посвящена аналогичному рассмотрению в квантовой механике. В третьей главе разбирается вопрос об описании немаксимально полных опытов, в частности об условиях применимости понятия статистического оператора матрицы плотности). В четвертой главе выводятся некоторые ограничения, которые накладываются на возможности измерений, производимых над макроскопическими системами, условием сохранения их заданной макроскопической характеристики. Значительная часть вопросов, затронутых в третьей и четвертой главах, заключается в получении свойств релаксации, Я-теоремы и т. д.— утверждений макроскопических, т. е., казалось бы, не связанных с вопросами о возможностях измерения. Поэтому, чтобы при решении поставленной в работе задачи не казалось странным возникновение этих вопросов, отметим сразу же, что самая суть поставленной задачи заключается в выяснении связи макроскопических утверждений с микромеханикой, а уравнениям последней можно, как известно, придать физический смысл лишь в связи с возможностями измерений. Пятая глава посвящена общим понятиям о релаксации физических систем, об j/У-теореме и о средних во времени значениях физических величин. В шестой главе выясняется связь между существованием релаксации и определенными свойствами гамильтониана системы.  [c.16]

Конечно, неправильно противопоставлять лагранжеву механику механике гамильтоновой. По существу, в области механики это лищь две различные формы описания механических движений. Однако гамильтонов способ оказался более плодотворным. Этот способ позволил найти далеко идущие обобщения, указывающие, например, подходы к изучению микромира, и войти в форме этих обобщений в квантовую механику, в статистическую физику и т. д.  [c.7]

В своих знаменитых работах 1824—1828 гг., представленных Ирландской Академии наук, Гамильтон, решая проблему оптики о распространении света в оптически неоднородных и неизотропных средах, пришел к уравнениям, впоследствии получившим название уравнений Гамильтона, или, по предложению Якоби, канонических уравнений. Удивительна судьба этих уравнений. Сам Гамильтон показал, что канонические уравнения могут быть с успехом использованы и в аналитической механике. Позже уравнения Гамильтона были применены в электронной оптике для описания движения заряженных частиц в электромагнитных полях. Развитие квантовой механики привело к созданию уравнений, совпадающих по форме с классическими уравнениями Гамильтона (Гайзенберг). Уравнения Гамильтона используются в различных областях механики и математики в небесной механике, в теории управления, в теории устойчивости движения, в теории нелинейных колебаний и т. д.  [c.278]


Благодаря своей простоте квантовые решеточные системы оказываются ценными и в неравновесной статистической механике. Рассматривая предельно простой случай обобш,енной модели Изинга (в смысле, указанном в начале данного пункта), Радин [309] проанализировал поведение во времени величины R) для широкого класса начальных условий и локальных наблюдаемых. Можно показать, что в этом случае эволюция во времени не действует G-абелевым способом. Для физических приложений более важно другое обстоятельство оказывается возможным придать точную математическую форму традиционно принимаемому положению о том, что скорость приближения к равновесию в термодинамическом пределе должна быть связана со степенью непрерывности спектра эффективного гамильтониана. Подчеркнем, что здесь речь идет об эволюции во времени локальной наблюдаемой, погруженной в бесконечную систему, а поэтому гамильтониан, о котором мы говорим, совпадает с тем, который локально реализует эволюцию во времени бесконечной системы. Как оператор этот гамильтониан зависит от гильбертова пространства, на котором он действует в конструкции ГНС, и поэтому степень непрерывности его спектра зависит от представления. Коль скоро начальное состояние фо выбрано, степень непрерывности спектра гамильтониана можно связать с зависимостью функции е ( со — со )=бшш от пространственных переменных. Следует иметь в виду также, что метод Радина допускает обобш,ение на взаимодействия более широкого типа, чем описанная выше простая модель Изинга.  [c.388]

Чтобы перейти от общего случая к классическому описанию систем N частиц, мы могли бы воспользоваться процедурой квази-классического перехода (именно в результате этого перехода появляются траектории отдельных частиц и другие атрибуты классического рассмотрения) и получить все, что надо, так сказать, без идейных затрат. Но нас сейчас интересуют не квантовые поправки и не критерии классичности системы, а лишь способ фиксации состояния. Поэтому вспомним просто механику, в которой микроскопическое состояние материальных точек можно полностью определить, задав в какой-либо определенный момент времени t их координаты g = (Г[,..., гдг) и импульсы р — (Pi,..., Рлг)- Иными словами, микроскопическое состояние классической системы можно задать как точку (9>Р) = (гь i rAr, Pi,. , Рлг) в бЛГ-мерном пространстве импульсов и координат частиц, которое называется фазовым пространством. Эволюция этого состояния описывается уравнениями классической механики, например системой канонических уравнений Гамильтона (W. Hamilton, 1834)  [c.24]

Якоби, в котором ищут такое каноническое преобразование, которое обращало бы функцию Гамильтона системы в нуль — такая функция Гамильтона не зависит от времени явно, сохраняется, но не имеет никакого отношения к энергии системы. Теперь мы видим, в чем тут дело — в классической механике из двух гамильтонианов Яр и Ящ остается аналог только гайзенбергова гамильтониана Яг — он-то и обращается в нуль в процедуре Гамильтона — Якоби, которая аналогична переходу к шредингеровой картине. В квантовой теории в этой картине возникает другой гамильтониан Яш, который управляет временной зависимостью векторов состояния, — но векторы состояния не имеют классического аналога, и поэтому в классическом рассмотрении этот новый объект исчезает из виду. Впрочем, это исчезновение не совсем бесследно в классическом описании сохраняется величина, связанная с квантомеханическим оператором эволюции U(t,to) (мы не будем сейчас устанавливать характер этой связи)—это производящая функция ф канонического преобразования Гамильтона — Якоби, которая удовлетворяла там уравнению Гамильтона — Якоби (1.77). Поэтому именно это уравнение оказывается классическим следом уравнения Шредингера и может быть получено из него соответствующим предельным переходом.  [c.466]


Смотреть страницы где упоминается термин Гамильтоново описание квантовой механики : [c.654]    [c.566]    [c.194]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.1  -> Гамильтоново описание квантовой механики



ПОИСК



Гамильтон

Гамильтонова механика

Зэк гамильтоново

Механика Гамильтона

Механика квантовая

Описание

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте