Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рентгеновские лучи, электроны, нейтроны

Рентгеновские лучи, электроны, нейтроны  [c.95]

Аналогичное понятие (атомный фактор) используется при описании рассеяния электронов, рентгеновских лучей и нейтронов.  [c.269]

Распределение центров рассеяния электронов проводимости в жидком металле однородно, что подтверждается данными дифракции рентгеновских лучей и нейтронов.  [c.203]


Именно эти три вида излучения — рентгеновские лучи, электроны и нейтроны — сегодня используются для анализа структуры кристаллов. С одной стороны, все они ведут себя схоже — как электромагнитные волны определенной длины. Для всех них выполняется закон Вульфа —- Брэгга. Тем не менее число различий между ними очень велико. Даже их беглый анализ выходит далеко за рамки этой книги. Поэтому мы очень кратко остановимся лишь на нескольких пунктах.  [c.98]

На этом мы заканчиваем рассказ о том, как лучами исследуют кристаллы. Мы постарались ответить на главный вопрос главы можно ли установить конкретное расположение атомов в веществе Расшифровывая дифракционные картины, полученные с помощью рентгеновских лучей, электронов или нейтронов, удается определить кристаллическую решетку, которую имеет интересующая нас фаза. В частности, кривую охлаждения железа, с которой мы начали эту главу, теперь вполне можно дополнить данными дифракционных экспериментов а- и б-железо (см. рис. 12) имеют ОЦК решетку, а у-железо — ГЦК.  [c.101]

Экспериментально структуры аморфных сплавов изучают с использованием "прямых" (дифракция рентгеновских лучей, электронов и нейтронов) и косвенных (ядерный магнитный резонанс, ядерный у-резонанс и  [c.280]

Аморфное состояние твердого тела — наименее изученная область современного структурного металловедения. При этом главная трудность состоит в описании структуры этого состояния, поскольку нельзя использовать трансляционные элементы симметрии и понятие элементарной ячейки, а методы, основанные на взаимодействии твердого тела с электромагнитным излучением (нейтроны, рентгеновские лучи, электроны), мало э4)фективны. Аморфное состояние твердого тела по структуре в значительной степени соответствует жидкости, поэтому в основе описания структуры этого состояния лежат флуктуационные параметры плотности, локального окружения и химического состава, что вносит в описание вероятностный и статистический характер.  [c.160]

Характерная черта аморфного состояния — наличие флуктуаций плотности, поэтому важную роль при анализе его структуры играет метод малоуглового рассеяния рентгеновских лучей и нейтронов, позволяющий получить достоверную информацию о локальных неоднородностях электронной плотности, связанных с кластерами или свободным объемом при условии отсутствия микрокристаллов и микронеоднородностей состава.  [c.161]


Законы рассеяния рентгеновских лучей, электронов и нейтронов существенно различны. Рентгеновские лучи рассеиваются только электронами атома, электроны — электрическими полями электронов атома и атомных ядер, а нейтроны, не имеющие электрического заряда, рассеиваются только под действием ядерных сил. Амплитуды рентгеновских лучей, рассеянных атома яи элемента с атомным номером г, примерно пропорциональны Для разных углов рассеяния зависимость амплитуды рассеянных электронов от атомного номера различна, но в среднем амплитуда примерно пропорциональна т. е. зависит от атомного номера рассеивающего элемента в меньшей мере, чем амплитуда рассеянных рентгеновских лучей. Эффективные сечения рассеяния электронов — величины того же порядка, что и действительные сечения атомов, а абсолютные амплитуды рассеяния на 2—3 порядка превышают абсолютные амплитуды рассеяния рентгеновских лучей. Благодаря этому в рассеянии участвуют только тончайшие слои вещества (практически толщиной 10 —Ю" м), в то время как рентгеновскую интерференционную картину дают обычно слои толщиной 10 —10 м. В рассеянии тепловых нейтронов участвуют слои толщиной в несколько миллиметров и даже сантиметров [93, 75].,  [c.64]

Эта книга возникла из записей, которые я сделал в течение последних 10 лет для лекций по физической оптике, физике дифракции и электронной микроскопии, предназначенных студентам старших курсов и аспирантам. Она отражает мой особый интерес к дифракции электронов и дифракции от разупорядоченных и несовершенных кристаллов в ней используется подход, особенно удобный для рассмотрения именно этих вопросов. Такой метод использует фурье-преобразование с самого начала, а не как обобщение методов рядов Фурье, он не только более удовлетворителен по лежащим в его основе концепциям и теориям, но и позволяет с единых позиций рассматривать все различные разделы физики дифракции, будь то дифракция электронов, рентгеновских лучей или нейтронов.  [c.9]

При дифракции рентгеновских лучей и нейтронов длины волн порядка 1 А, так что диаметр сферы Эвальда будет 2 А" . В этом случае необходима регистрация рассеяния при всех углах от О до я, что отвечает полной величине пересечения сферы с графиком функции /= (и) , как показано на фиг. 5.9, а. При фоторегистрации обычно используют цилиндрическую пленку образец располагают на ее оси. При электронной регистрации с помощью счетчиков фотонов или частиц используют гониометрический столик, позво-  [c.119]

ТЫ. Кроме того, с ее помощью можно получить непосредственно результаты в простом двухволновом случае, который достаточен для описания большинства динамических эффектов, наблюдаемых при дифракции рентгеновских лучей и нейтронов, а для многих явлений, характерных для дифракции электронов, она дает разумное первое приближение.  [c.176]

Поскольку для наиболее важных случаев дифракции рентгеновских лучей и нейтронов и для отдельных случаев дифракции электронов максимальное число сильных дифрагированных пучков равно двум, можно принять полезное приближение, согласно которому отличны от нуля только две волновые амплитуды, о и Можно подчеркнуть, что это не есть приближение к общему решению в обычном смысле. Это решение другой и более простой задачи допущения о наличии некой области, в которой могут существовать только две волны. Тогда матричное уравнение (8.7) сразу упрощается  [c.181]

Для рентгеновских лучей и нейтронов главный эффект поглощения обычно не дает вклада в дифракционную картину. Падающие рентгеновские лучи могут возбудить электроны внутренних оболочек атомов образца, теряя при этом большую часть своей энергии. Характеристическое излучение, испускаемое возбужденными атомами, обычно отфильтровывается. Как было показано в гл. 4, амплитуды атомного рассеяния для атомов образца в результате становятся комплексными и состоят из действительной и мнимой частей / =/о +Г + Мнимая часть связана с поглощением. Например, рассеянное излучение в направлении падающего луча дает смещение по фазе на я/2 и амплитуду в электронных единицах фо + /(0)- Следовательно, /" (0) вычитается изт о и, таким образом, уменьшается интенсивность падающего излучения.  [c.280]


Перед тем как перейти к обсуждению методов, используемых для получения информации из динамических электронных дифракционных эффектов, можно также обсудить более детально применимость двухволнового приближения. Как мы видели, для дифракции рентгеновских лучей и нейтронов это приближение является хорошим почти для всех случаев, необходимо только сделать так, чтобы геометрия эксперимента не позволяла появиться третьему пучку значительной амплитуды. Предположение двухволновых условий было единственной практической основой первых попыток получить информацию из электронных дифракционных динамических эффектов и оно оставалось до тех пор, пока не стало совершенно ясно, что даже в наиболее известных случаях пренебрежение п-волновыми взаимодействиями приводит к серьезным ошибкам, которые нарушают необходимую точность измерений.  [c.336]

Благодаря тому, что можно установить взаимно однозначное соответствие между дифракционными лучами, к-рые дает монокристалл, и узлами О. р., понятие О. р. чрезвычайно удобно при описании дифракции на кристаллах рентгеновских лучей, электронов и нейтронов (см. Рентгеновский структурный анализ, Электронография,Нейтронография). Индексы узла О. р. /), 9 и / связываются с индексами h, knl, нек-рой серии взаимно параллельных узловых сеток решетки кристалла, соотношениями р = пЛ, q = пк, г = п1, где п — порядок отражения дифракционного луча от данной серии сеток. В этом случае каждому узлу О. р. приписывается определенный вес, выражаемый через интенсивности дифракционных лучей. Спм.мет-рия такой взвешенной О. р. описывается одной из точечных групп симметрии с добавлением центра инверсии (если его нет в этой группе) и всех порожденных этим добавлением элементов симметрии (закон центро-симметричности дифракции на кристаллах).  [c.470]

Упругое и неупругое рассеяние нейтронов. В гл. 5 мы обсуждали вопрос об определении формы фононного спектра по данным неупругого рассеяния рентгеновских лучей и нейтронов. Картина рассеяния рентгеновских фотонов определяется пространственным распределением электронного заряда, т. е. лишь плотностью заряда, независимо от наличия или отсутствия намагниченности. Нейтроны же, распространяясь в кристалле, обнаруживают два аспекта своих свойств и волновой, и магнитный, поскольку обладают собственным магнитным моментом  [c.560]

Это явление рассеяния в точности аналогично дифракции падающего извне пучка рентгеновских лучей или нейтронов ( 4.1 и 4.2) на системе атомов или ионов. Будем считать для простоты (ср. с 10.2), что полную потенциальную энергию электрона на поверхности Ферми можно записать в виде суперпозиции N  [c.455]

Чтобы придать формуле типа (10.17) определенный смысл, надо знать, как определить значения различных физических величин, в ней фигурирующих. Что касается кр и ]р, то мы можем обратиться к соотношениям (10.5) и (10.7), поскольку концентрацию электронов проводимости для любого жидкого металла можно найти, зная эффективную валентность ионов (ср. с 10.10). Можно также непосредственно определить структурный фактор 5 (д) из опытов по рассеянию рентгеновских лучей или нейтронов (см.  [c.457]

До сих пор центры окраски описывались как следствие добавки металла в кристалл сверх стехиометрического состава. Однако они могут быть созданы в кристаллах также вследствие либо облучения рентгеновскими лучами, либо бомбардировкой нейтронами и электронами. Рентгеновские лучи обычно поглощаются вблизи поверхности, поэтому кристаллы, окрашенные подобным образом, имеют обычно слой с очень глубокой окраской вблизи поверхности.  [c.166]

К корпускулярным излучениям относятся быстрые и медленные нейтроны, осколки ядер, а-частицы, -лучи-электроны, к в о л н о в ы AJ излучения м относятся Y-лучи, л есткое и мягкое рентгеновское излучение.  [c.45]

В большинстве случаев проводится дилатометрия [3], иммерсионное взвешивание [4, 5] и электронно-микроскопическое исследование [3, 6] контрольных (исходных) и облученных образцов. На них базируются основные представления о закономерностях развития радиационного распухания. Ионная микроскопия [7] и ядерно-физические методы исследования (позитронная аннигиляция [8], малоугловое рассеяние нейтронов [10] и рентгеновских лучей [9]) дополняют их ионная микроскопия и позитронная аннигиляция позволяют проследить за образованием, зародышей пор, начиная с нескольких вакансий, а метод малоуглового рассеяния рентгеновских лучей — определить концентрации-пор и дислокационных петель при высоком уровне радиационного, повреждения.  [c.115]

При испытании на радиационную стойкость большое значение имеют вид и источник радиации. Самым распространенным и наиболее мощным источником радиации служит ядерный реактор. Облучение осуществляют нейтронами, р-частицами, у-лучами, получаемыми в результате прямых ядерных реакций, а также электронами высокой энергии, получаемыми при радиоактивном р-распаде от ускорителей, и электромагнитными излучениями типа рентгеновских лучей [107].  [c.148]

Условие дистракции Вульфа-Брэгга. Рассмотрим геометрическое условие дифракции на кристалле диафрагмированного монохроматического пучка излучения. Это условие (закон Вульфа—Брэгга) применимо для дифракции рентгеновских лучей, электронов, нейтронов.  [c.55]

Широкий круг физических методов иссле дования поверхностных слоев металлов и сплавов основан на дифракции рентгеновских лучей, электронов, нейтронов. Особенности картин, получаемых при дифракции, определяются длинами волн излучений и законами рассеяния лучей атомами вещества. В рентгеноструктурном анализе используют лучи с длинами волн в интервале 0,05—0,25 нм (Хр = 1,234/и, где и — напряжение, кВ). При обычно применяемых в электронографии напряжениях 20—100 кВ длины электронных волн лежат в пределах 0,008—0,003 нм, т. е. на порядок меньше длины наиболее жестких монохроматнч еских лучей, используемых при рентгеноструктурном анализе. В нейтронографических исследованиях чаще всего используют так называемые тепловые нейтроны, энергия которых соответствует тепловому равновесию с замедляющими м атомами, т. е. закону распределения Максвелла (Хц = 2,521/Т).  [c.64]


Промежуточная по энергии между сильными (ионной, металлической и ковалентной) и слабой (ван-дер-ваальсовой) связь, называемая водородной, возникает между атомами Н, входящиМ И в ковалентные группировки типа NH или ОН, и электроотрицательными атомами N, О, F, С1, S, причем расстояния между атомом Н и соседними атомами чаще всего бывают неодинаковыми. Поэтому ее типичное изображение АН...В. При взаимодействии атома Н с атомами с большей электроотрицательностью часть электронного заряда Н передается соседям. По данным о дифракции рентгеновских лучей и нейтронов и некоторым другим оценкам, в группе АН атом Н частично ионизован, сохраняя лишь 0,5—  [c.113]

Кларк [39,401 изучал оптические характеристикиMgO, подвергнутой действию различных видов излучения. Кристаллы MgO облучали ультрафиолетовым светом, рентгеновскими лучами и нейтронами. Им было проанализирована схема образования полос поглощения, а также их светового и термического восстановления, предложена модель активации под действием ультрафиолетовых лучей и сделана попытка объяснить некоторые результаты рентгеновского и нейтронного облучения. Он исследовал роль примесей в MgO и сделал вывод, что радиационные изменения оптических свойств не зависят непосредственно от примесей. По степени эффективности в образовании полос поглощения виды излучения располагаются в следующем порядке нейтроны, электроны, рентгеновские лучи. Вопрос о влиянии облучения на оптические свойства MgO обсуждается в работе Биллипгтопа и Кроуфорда [21]. Верц и др. [214, 215] применили технику электронного спинового резонанса для изучения центров окрашивания в MgO и объяснили полосы поглощения на основе химических изменений примесей переходных элементов, содержащихся в MgO.  [c.174]

Электронный пучок получить намного легче, чем нейтронный. Для этого часто используется явление термоэлектронной эмиссии (хотя есть и другие способы), когда разогретая до высокой температуры вольфрамовая нить испускает электроны со своей поверхности. В отличие от нейтронов и рентгеновских лучей электроны имеют заряд и поэтому намного сильнее взаимодействуют с веществом. В частности, они обладают низкой проникающей способностью, и эксперименты приходится проводить в вакууме. Вакуумиро-вание всегда существенно осложняет работы и является (при прочих равных условиях) нежелательной операцией. Другой минус электронной техники — необходимость тщательной подготовки образцов.  [c.99]

Кстати, внешне аморфный металл ничем не отличается от кристаллического. Но из-за беспорядочного расположения атомов стекло не является дифракционной решеткой для излучения, и на дифрактограмме отсутствуют резкие брэгговские пики (рис. 137). Облучая закаленные из жидко-сти образцы сплавов рентгеновскими лучами, электронами или нейтронами, можно определить, успешно ли прошла аморфизация.  [c.234]

Для дифракции рентгеновских лучей или нейтронов значение функции поглощения, связанной с тепловым диффузным рассеянием, очень мало, поскольку оно входит в рассмотрение сначала в виде членов рассеяния второго порядка, и, таким образом, в отличие от фактора Дебая—Валлера это значение пренебрежимо мало в условиях кинематического рассеяния. В условиях динамического рассеяния для рентгеновских лучей вероятность двойного диффузного рассеяния с заметной амплитудой также пренебрежимо мала . Однако, как мы увидим ниже, в условиях динамической дифракции электронов коэффициенты поглощения, связанные с тепловым диффузным рассеянием, могут оказаться важными.  [c.280]

Трактовка динамического рассеяния электронов несовершенными кристаллами на той же основе, что и экстинкционная трактовка дифракции рентгеновских лучей или нейтронов, вряд ли возможна. В самом деле, в пределах кристаллических областей, гораздо меньших обычного размера блока мозаики, имеют место сильные динамические эффекты кроме того, на пути пучка электронов при прохождении его через монокристаллический образец редко встречается больше одного или двух блоков мозаики.  [c.358]

Значительная часть экспериментальных исследований топологически неупорядоченных металлов посвящ ена электрическим свойствам жидких сплавов (см., например, [6.47]). В принципе теория электронного спектра и кинетических свойств таких систем представляет собой просто обобщ ение развитой в настояш ей главе теории моноатомных жидкостей. Так, например, в формуле приближения ПСЭ (10.17) для удельного сопротивления надо лишь заменить квадрат модуля матричного элемента (10.12) соответст-вуюп] ей величиной (4.38), уже заготовленной для описания рассеяния рентгеновских лучей или нейтронов в жидких смесях. Окончательные выражения, содержаш ие псевдопотенциалы (или, можно полагать, -матрицы атомов различных компонент), а также разнообразные парциальные структурные факторы (4.36), выглядят весьма устрашающе. Однако их удается несколько упростить (ср. с 2.13), если жидкость можно рассматривать как смесь со случайным замещением [74]. Подставляя (4.40), например, в формулы (10.17) или (10.37), мы видим, что удельное сопротивление сплава записывается как  [c.512]

На рис. 15.7 приведены изобрангения дифракционной картины, возникающей при прохождении рентгеновских лучей (а) и электронного пучка (б) через тонкую золотую фольгу (кольца Дебая — Шерера, см. 118). Подобные дифракционные опыты были осуществлены также с пучками молекул и с пучками нейтронов.  [c.361]

Для получения дифракционной картины существенно, чтобы длина волны используемого излучения была сравнима с этим средним межатомным расстоянием. В рентгенографии для исследования атомной структуры применяют рентгеновские лучи с длинами волн 01 0,7-10- ° до 3-10- ° м, в электронографии электроны с длинами волн де Бройля —от 3-10 до м, в нейтроно-  [c.35]

Поскольку рассеяние тепловых нейтронов вообще не зависит явно от атомного номера исследуемого вещества, то с помощью дифракции нейтронов легко выявляется различие атомов с близкими. Z (например, при исследовании упорядочения атомов Fe и Со в системе Fe — Со), что трудно сделать рентгенографически и электронографически. При использовании дифракции нейтронов возможно изучение изотопических (часто рассеивающие способности изотопов одного и того же элемента значительно различаются) и спиновых различий атомов, входящих в решетку, причем такие различия не замечают ни рентгеновские лучи, ни электроны. В то же время при дифракции нейтронов могут оказаться неразличимыми (имеющими приблизительно равную амплитуду рассеяния) совершенно разные атомы. Так как легкие вещества рассеивают нейтроны также эффективно, как и тяжелые, то с помощью нейтронографии успешно проводят изучение кристаллической структуры веществ, в состав которых входят одновременно атомы легких и тяжелых элементов (атомы водорода в гидриде циркония, углерода в аустените), а также структур из легких элементов (льда, гидрида натрия, дейтерита натрия, графита). Такие структуры нельзя исследовать с помощью рентгеновских лучей и затруднительно с помощью электронов нз-за незначительного рассеяния их легкими элементами.  [c.37]

Вторым крупным исследовательским центром стал Московский физический институт имени П. Н. Лебедева, преобразованный в 1934г. из Физической лаборатории Академии наук СССР. В его отделах и лабораториях велись исследования рентгеновских лучей и космической радиации, выполнялись работы по физике нейтронов, разрабатывалась теория ускорения атомных частиц и т. д. В нем же в 1934 г. П. А. Черенковым в ходе изучения явлений люминесценции растворов солей урана под действием гамма-лучей был открыт эффект свечения веществ при прохождении быстрых заряженных частиц, использованный затем в приборах для точного измерения скорости и направления полета электронов, протонов, мезонов и гамма-квантов высоких энергий  [c.151]


При дифракции частиц того или иного сорта проявляется физ. специфика их взаимодействия с веществом. Так, рассеяние электронов определяется эл,-статич. потенциалом атомов ф (г), так что U = e(p r), где е — заряд олсктропа при рассеянии нейтрона оси, вклад в потенц. энергию U вносит их взаимодействие с ядром, а также с магн. моментом атома (см. Дифракция электронов, Дифракция нейтрона/), Дифракция атомов и молекул). Тем не менее явления Д. ч. всех типов, а также дифракции рентгеновских лучей очень сходны и оггисываются одинаковыми или очень близкими ф-лами, различающимися множителями — атомными амплитудами. Мн. явления дифракции света также на.ходят аиалоги в Д. ч.  [c.680]


Смотреть страницы где упоминается термин Рентгеновские лучи, электроны, нейтроны : [c.125]    [c.138]    [c.157]    [c.110]    [c.5]    [c.174]    [c.205]    [c.54]    [c.430]    [c.555]    [c.682]    [c.656]   
Смотреть главы в:

Репортаж из мира сплавов (Библ, Квант 71)  -> Рентгеновские лучи, электроны, нейтроны



ПОИСК



Лучи электронные 279, XII

Нейтрон

Рентгеновские лучи

Рентгеновские электронные

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте