Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в пластинах при изгибе. Дифференциальное уравнение изгиба пластины

Напряжения в пластинах при изгибе. Дифференциальное уравнение изгиба пластины  [c.419]

При выводе дифференциального уравнения изгиба ортотропных пластин будем принимать те зке допущения, что н в теории изотропных пластин, т. е, будем полагать, что при изгибе нормаль к срединной поверхности только поворачивается, оставаясь прямой, а нормальными напряжениями в  [c.168]

Это уравнение аналогично дифференциальному уравнению изгиба балки, в котором изгибная жесткость EJ заменяется цилиндрической жесткостью D. В силу этого цилиндрический изгиб пластины можно рассматривать как изгиб множества балок-полос прямоугольного сечения единичной ширины, мысленно вырезанных из пластины в поперечном направлении (рис. 20.16, а, б). Расчет таких балок-полос производится обычными методами сопротивления материалов (построение эпюр внутренних усилий, определение напряжений и т. п.).  [c.432]


Применение метода граничных элементов часто осложняется отсутствием фундаментальных решений дифференциальных уравнений или громоздкими сложными выражениями, определяющими фундаментальные решения. В настоящем параграфе излагается итерационный процесс решения задач изгиба пологих оболочек в геометрически нелинейной постановке, основанный на применении фундаментальных решений задач изгиба и плоского напряженного состояния пластины. Приведены интегральные уравнения непрямого МГЭ. Система нелинейных дифференциальных уравнений в перемещениях (3.1.3) для оболочки постоянной толщины записывается в виде [24]  [c.72]

Для пластин система дифференциальных уравнений распадается на две, одна из которых описывает плоское напряженное состояние пластинки, а другая — изгибание срединной поверхности. Соответственно разбиваются и граничные условия. В случае изгиба трехслойных пластин граничным условиям (22) можно дать следующую наглядную статико-геометрическую интерпретацию  [c.237]

Если прогиб пластины соизмерим с ее толщиной, то уже нельзя пренебрегать напряжениями в ее срединной поверхности, как это имело место при выводе уравнения (1. 1). Эти напряжения будут соизмеримы с напряжениями изгиба. Дифференциальное уравнение равновесия такой пластины имеет вид  [c.25]

Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]


В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

Следует добавить, что дифференциальные уравнения, описывающие процессы изгиба и выпучивания длинной прямоугольной пластинки по цилиндрической поверхности, образующая которой параллельна длинной стороне пластинки, лишь значениями некоторых коэффициентов (см. ниже) отличаются от соответствующих уравнений изгиба и устойчивости слоистых балок и стержней. Точно также уравнения, описывающие процессы изгиба и выпучивания длинной панели по цилиндрической поверхности, аналогичны соответствующим уравнениям изгиба и устойчивости арки. Так возникают пары близких между собой систем дифференциальных уравнений, характеризующих механическое поведение существенно различных элементов конструкций. Ясно, что методы исследования краевых задач для этих близких систем уравнений одинаковы, а результаты, полученные при решении одной из них, сохраняют свое значение и для другой. Поэтому сформулированные ниже выводы о характере и степени влияния поперечных сдвигов, обжатия нормали, вида краевых условий на характеристики напряженно-деформированного состояния и критические параметры устойчивости слоистых длинных пластин и панелей остаются справедливыми для балок, стержней и арок.  [c.94]

Этот случай изгиба пластин более сложный, так как напряжения и деформации представляют собой функции двух независимых переменных поэтому дифференциальные уравнения получаются в частных производных.  [c.220]

Двумерная классическая теория изгиба пластин легко выводится из трехмерной постановки с малым параметром. Представив радиус-вектор в объеме Jf = + kz, получим V3 = XV +, и тогда дифференциальные уравнения в напряжениях примут вид  [c.208]

Метод расчета напряженно-деформированного состояния цилиндрических складчатых систем разработал проф. В.З. Власов [24]. К недостаткам метода В.З. Власова следует отнести сложную логику формирования разрешающей системы уравнений, необходимость решать дифференциальные уравнения для каждого элемента конструкции, ограничения на торцевые условия опирания элементов складчатых систем (они должны быть одинаковыми), относительную сложность реализации алгоритма на вычислительных машинах. Позже были разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемещений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин с шарнирным опиранием по торцам [2] и различные модификации метода перемещений и смешанного метода [46, 104]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма на персональных компьютерах. Однако он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций, образование основной системы привносит недостатки, связанные с ее использованием, необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы.  [c.232]


Второе обстоятельство относится к некоторым аспектам двойственности характеристик функций напряжений и перемещений. Однородное дифференциальное уравнение для функции напряжений Эри совпадает с уравнением изгиба пластин для функции прогиба ш при нулевых распределенных нагрузках. Поэтому, если в (6.74а) функция напряжений заменяется на ш, а [Е1" — на [Е1, то интеграл оказывается равным энергии деформации изгибаемой тонкой пластины. Следовательно, определение функции напряжений (поля Ф) идентично отысканию поля прогибов (поля у) при изгибе пластин, а соответственные матрицы податливости и жесткости различаются лишь коэффициентами упругости заменой 1Е1 1 на  [c.190]

Формулировки, основанные на принципе минимума дополнительной работы в задачах о плоском напряженном состоянии, включают задание функционала, содержащего вторые производные, если в качестве основной неизвестной выступает функция напряжений Эри Ф. Следовательно, требуется, чтобы Ф и ее первые производные были непрерывны при переходе от элемента к элементу. Эти вопросы интенсивно изучались в связи с задачами изгиба пластин, где нормальное смещение ш должно удовлетворять дифференциальному уравнению того же вида, что и функция Ф. Выбор представлений для поля данного типа осуществляется в гл. 12. Сводка решений прикладных задач для плоского напряженного состояния приводится в [9.17].  [c.289]

На рис. 12.1 изображен бесконечно малый элемент тонкой пластины толщины t. Пластина характеризуется плоским напряженным состоянием (изгиба пластин, напряжения линейно изменяются по толщине. Интегрируя действующие в пластине напряжения по ее толщине, приходим к результирующим силовым характеристикам в виде изгибающих Ж, iWj, и крутящего моментов, отнесенных к единице длины. Векторы, отвечающие положительным значениям этих моментов, изображены на рис. 12.1. Для простоты на рисунке не показаны производные этих элементов и соответствующие им сдвиги, которые учитываются при формулировке дифференциальных уравнений равновесия. Имеем  [c.345]

Здесь X = (Eu), Ev, М, Q) - вектор перемещений и усилий, соответствующих общему решению однородного дифференциального уравнения изгиба оболочки, растяжения или изгиба пластины либо растяжения или кручения кольцевого элемента Хо,ч. 1,ч то же для частного решения неоднородного уравнения АХ — вектор разрьгеов перемещений и усилий в сопряжениях Е - модуль упругости в пределах пропорциональности напряжений и деформаций А - матрица перехода от вектора Xq к вектору Xi нижние индексы О и 1 относятся к начальному и конечному краям элемента.  [c.206]

Здесь бар представляют собою компоненты деформации срединной плоскости 2бар = и-а, s + а. Формулы (12.4.3) достаточны для построения общей теории. Составляя функционал Лагранжа и приравнивая нулю его вариацию, мы получим некоторые дифференциальные уравнения для м и ц с соответствующими граничными условиями, т. е. построим техническую теорию изгиба пластин, заранее предполагающую выполнение известных кинематических ограничений. Но мы будем пользоваться вариационным принципом Рейснера и зададимся следующим законом распределения напряжений по толщине  [c.397]

Элементами этих конструкций являются относительно тонкие пластины, работаюшце в условиях изгиба и плоской задачи теории упругости. Метод расчета напряженно-деформированного состояния цилиндрических складчатых систем разработал В.З. Власов [63]. Здесь был применен вариационный метод для понижения мерности дифференциальных уравнений изгиба и плоской задачи, что позволило успешно решить проблемы расчета систем подобного типа. К недостаткам метода В.З. Власова следует отнести сложную логику формирования разрешаюшей системы уравнений, необходимость решать дифференциальные уравнения для каждого элемента конструкции, ограничения на торцевые условия опирания элементов складчатых систем (они должны быть одинаковыми), относительную трудность реализации алгоритма на ЭВМ.  [c.479]

Рассмотрим теперь задачу о несимметричном изгибе предварительно напряженных кольцевых пластин, которую поставили Альцхаймер и Дэвис [1968] и которая обсуждалась в п. 2.2.4. Эта задача приводит к краевой задаче для обыкновенного дифференциального уравнения четвертого порядка (2.2.28) с краевыми условиями (2.2.29), (2.2.30). При е—+0 уравнение (2.2.28) при-  [c.142]


Смотреть страницы где упоминается термин Напряжения в пластинах при изгибе. Дифференциальное уравнение изгиба пластины : [c.60]    [c.185]   
Смотреть главы в:

Сопротивление материалов с основами теории упругости и пластичности  -> Напряжения в пластинах при изгибе. Дифференциальное уравнение изгиба пластины



ПОИСК



425 — Уравнения пластин

Дифференциальное уравнение изгиба пластины

Изгиб дифференциальные

Напряжение изгибающие

Напряжение при изгибе

Напряжения Напряжения изгиба

Напряжения Уравнения

Пластина Напряжения

Пластины изгиб

Уравнение дифференциальное изгиба

Уравнение изгиба



© 2025 Mash-xxl.info Реклама на сайте