Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение элементов авиационных конструкций

В подавляющем большинстве случаев разрушения элементов авиационных конструкций реализуется нормальное раскрытие берегов трещины. В этом случае предельное состояние материала с трещиной может быть эффективно определено на основе (5г) -модели, в которой момент перехода к нестабильности разрушения определяется достижением критического (Ьг)к раскрытия вершины трещины [48].  [c.103]

Разрушение элементов авиационных конструкций, как правило, сопровождается работой пластической деформации как на этане зарождения.  [c.104]


РАЗРУШЕНИЕ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ  [c.101]

Причины возможного разрушения элементов авиационных конструкций  [c.104]

Прошло уже более 40 лет с того момента, когда была опубликована первая работа Форсайта и Ридера [5] по исследованию закономерности формирования усталостных бороздок на поверхности излома при регулярном блочном нагружении элемента авиационной конструкции. Последовавшие работы в области исследования усталостных разрушений привели к осознанию возможности использования шага усталостных бороздок в качестве характеристики подрастания трещины за  [c.19]

Применительно к росту усталостных трещин в элементах авиационных конструкций процесс разрушения сопровождается пластической деформацией в пределах зоны перед вершиной трещины. Размер этой зоны в произвольном направлении в случае простого одноосного растяжения может быть определен по соотношениям (2.2) из условия достижения предела текучести материала на контуре рассматриваемой зоны следующим образом  [c.103]

Принцип подчинения означает, что применительно к силовому воздействию на элемент конструкции, например, по нескольким направлениям, их роль в развитии разрушения может быть рассмотрена через раскрытие у вершины трешины. Широкий спектр многофакторных воздействий на элементы авиационных конструкций приводит к реализации нормального раскрытия берегов усталостных трещин. При этом тот или иной фактор воздействия увеличивает или уменьшает раскрытие берегов трещины, не меняя вида или типа самого раскрытия. Следовательно, через величину нормального раскрытия вершины трещины, как параметр порядка, можно охарактеризовать широкий спектр условий внешнего воздействия на элемент конструкций при распространении в нем усталостной трещины, например, в соответствии с соотношением (2.20).  [c.121]

Перейдем теперь к рассмотрению роли параметров цикла нагружения в кинетике усталостных трещины применительно к эксплуатационным условиям развития разрушений в элементах авиационных конструкций.  [c.271]

Выполненный анализ статистических данных по разрушению дисков компрессоров из титановых сплавов показал, что распределение их долговечности может иметь три максимума по числу возникающих случаев при возрастающей наработке (см. предыдущую главу). Первый максимум определяют вносимые в материал дефекты при изготовлении дисков, второй — специфическое поведение материала дисков, обладающего чувствительностью к условиям нагружения дисков в эксплуатации, третий — собственно исчерпание долговечности дисков, которую они могут реализовать в нормальных условиях эксплуатации. Таким образом, статистически однородные процессы накопления повреждений в элементах авиационных конструкций, повторяющиеся от полета к полету, могут быть охарактеризованы устойчивыми законами распределения повреждений (трещин). Причем число максимумов случаев будет зависеть от числа причин, по которым реализуется накопление повреждений в отдельных группах однотипных элементов конструкций. Отсутствие же статистически отчетливой картины распределения долговеч-  [c.567]


Первые систематические исследования сопротивления разрушению при малоцикловом нагружении бьши проведены на элементах авиационных конструкций. Существенная роль циклических перегрузок в инициировании малоцикловых разрушений стала особенно проявляться в годы Второй мировой войны, когда ведение боевых операций значительно увеличило не только уровни статических нагрузок на самолеты, но число вылетов. Вместе с тем эти перегрузки оставались ниже предельных разрушающих нагрузок при однократном нагружении. Опыты Н.И.Марина показали, что увеличение числа циклов нагружения N от 1 до 10" может вызывать снижение разрушающих нагрузок на 30-60% в зависимости от механических свойств материала, концентрации напряжений, частоты нагружения и наличия сварных швов.  [c.71]

Условия реализованного внешнего воздействия при проведении экспертного исследования всегда неизвестны, однако оценка последствий такого воздействия в интегральном виде может быть дана с точки зрения определения эквивалентных характеристик по параметрам рельефа излома. В связи с этим необходимо указать на один из основных принципов неопределенности, существующий в экспертных исследованиях причин разрушения элементов конструкций авиационной техники  [c.100]

Подавляющее большинство разрушений элементов конструкций в эксплуатации, в том числе и авиационных, происходит в условиях макроскопической ориентации плоскости треш ины нормально к поверхности детали. Одновременно с этим доминирует нормальное раскрытие берегов трещины при разнообразном многопараметрическом внешнем воздействии, о чем свидетельствуют параметры рельефа излома, формируемые в направлении роста трещины. Следует подчеркнуть, что речь идет не только о подобии ориентировки трещины, но и о подобии между последовательностью реализуемых механизмов разрушения при распространении трещины в эксплуатации в случае многоосного нагружения и в лабораторном опыте, когда осуществлено одноосное циклическое растяжение образца с различной асимметрией. Указанное геометрическое и физическое подобие позволяет ввести универсальное описание процесса роста усталостных трещин по стадиям при многопараметрическом внешнем воздействии.  [c.233]

Тонкостенные оболочечные конструкции широко используются в различных отраслях техники в качестве сосудов давления, уплотнительных и компенсирующих устройств, планеров самолетов и элементов авиационных двигателей, корпусов судов и других транспортных средств. В процессе эксплуатации многие из них часто подвержены интенсивным силовым и температурным воздействиям. Длительное статическое и циклическое деформирование конструкций в этих условиях ведет к прогрессирующему формоизменению, местной или общей потере устойчивости, накоплению повреждений и разрушению их наиболее нагруженных элементов.  [c.151]

По-новому встали вопросы выносливости авиационных конструкций начале 40-х годов. Интенсивное использование во время Великой Отечественной войны авиационной техники сделало необходимым решение задачи об обеспечении прочностного (усталостного) ресурса планера самолета. На некоторых самолетах, обладавших достаточной статической и вибрационной прочностью, были случаи усталостного разрушения элементов. Так, в 1941 г. на одном из легких самолетов наблюдались систематические поломки штыря, крепящего ногу шасси к лонжерону крыла. Анализ прочности штыря показал достаточный запас его статической прочности. Натурный эксперимент, в котором непосредственно измерялись усилия, действующие на самолет при взлете и посадке, показал, что нагрузки, как правило, составляли не более 50% максимальных эксплуатационных нагрузок, принятых в расчете. Однако такая нагрузка за каждый взлет-посадку нерегулярно повторялась несколько раз. Поставленные в лаборатории испытания на прочность при воздействии измеренных нерегулярных повторных статических нагрузок привели при ограниченном числе повторений к разрушению штыря. Так были получены первые результаты, показавшие значение нерегулярной циклической нагрузки для выносливости авиационной конструкции.  [c.303]


Книга может быть полезна специалистам, занимающимся анализом разрушений металлических элементов конструкций, которые работают не только в авиации, но и в других отраслях промышленности. Это обусловлено рассмотрением общей методологии развития процесса усталостного разрушения металлов на основе Ре-, Ti-, А1-, Ni-, Mg-, что охватывает практически весь спектр металлических конструкций, которые используются в настоящее время в различных отраслях промышленности, в том числе и в атомной энергетике. Поэтому она может оказаться полезной и для материаловедов, занимающихся совершенствованием эксплуатационных характеристик металлов и сплавов. Она необходима конструкторам, занимающимся проектированием современных ВС и моделирующим процессы распространения усталостных трещин в элементах конструкций с учетом реальных условий эксплуатации, внедряющим различные средства неразрушающего контроля для обоснования периодичности осмотров элементов конструкций в эксплуатации, особенно при использовании методов неразрушающего контроля авиационной техники.  [c.17]

Наряду с растворами электролитов коррозионное растрескивание аустенитных нержавеющих сталей наблюдается в воде, а также в паровой фазе (в сухом, перегретом и насыщенном паре). Поэтому в системах тепловых и атомных электростанций наблюдается коррозионное растрескивание элементов конструкций из нержавеющих аустенитных сталей. В авиационной практике происходят разрушения болтов из мартенситной стали вследствие коррозионного растрескивания во влажной атмосфере.  [c.44]

Большие трудности связаны с получением статистических данных о несущей способности элементов конструкций. Для этого используются в основном два способа. По одному из них экспериментально определяются функции распределения характеристик усталости (или других необходимых механических свойств) для материала путем массовых испытаний лабораторных образцов. Пользуясь условиями подобия, по ним определяется циклическая несущая способность деталей. Систематические исследования усталостных свойств легких авиационных сплавов Б статистическом аспекте были проведены, например, кафедрой сопротивления материалов МАТИ [7 10 11 14] и другими организациями [5]. Это позволило показать применимость усеченного нормально логарифмического распределения для величин долговечностей и ограниченных пределов усталости, установить зависимость дисперсий чисел циклов от уровня напряжений, построить семейства кривых усталости по параметру вероятности разрушения. На основе гипотезы прочности слабого звена были разработаны критерии подобия при усталостных разрушениях в зависимости от напрягаемых объемов с учетом неоднородности распределения  [c.144]

Для подготовки инженеров-механиков по авиационной технологии вопросы прочности элементов конструкций как фактора их надежности имеют существенное значение. Действующая программа курса сопротивления материалов предусматривает ознакомление студентов лишь с основными понятиями вероятности разрушения в разделе о расчете на усталость.  [c.289]

К числу основных характеристик материалов, определяющих возможность их применения в конструкциях, относятся сопротивление деформациям и разрушению. Учитывая постоянную тенденцию к понижению запасов прочности и повышению эксплуатационной надежности, наряду с обеспечением сопротивления элементов конструкций упругим деформациям важное значение приобретают анализ и обоснование сопротивления неупругим (упругопластическим и реологическим) деформациям. Допустимость возможности возникновения неупругих деформаций в конструкциях и необходимость их надлежащего учета в расчетах прочности и надежности вытекают из требований минимальной массы конструкций (атомных, авиационных, космических, подводных) и технологических возможностей при изготовлении крупногабаритных конструкций (химические и атомные реакторы, тепловые энергоблоки больших мощностей, супертанкеры, домны-гиганты, нефте-газохранилища и перекачивающие установки). Так как при эксплуатации указанных конструкций обычно имеет место циклическое нестационарное тепловое и механическое нагружение, то для наиболее нагруженных зон этих конструкций становятся характерными процессы циклических упругих и упругопластических деформаций. При таких условиях деформирования образование пре-  [c.67]

Переход к разрушению элементов авиационных конструкций на заключительной фазе развития усталостной трещины может быть осуществлен в широком диапазоне температурно-скоростных условий нагружения. Возможны разнообразные ситуации по интенсивности напряженного состояния материала в зоне страгивания трещины применительно к широкому классу конструкционных материалов на основе железа, титана, алюминия, магния и никеля. Поэтому в условиях эксплуатации могут быть достигнуты ситуации с минимально реализованной вязкостью разрушения вплоть до межзеренного проскальзывания или, напротив, может произойти высокопластичное разрушение, в котором сочетаются процессы внутризе-ренного скольжения и межзеренной ползучести. Вся совокупность реализуемых таким образом ситуаций в условиях эксплуатации должна рассматриваться с единых энергетических позиций с привлечением карт или диаграмм областей устойчивого поведения материала [40-42].  [c.97]

Уравнение (4.5) при всей своей привлекательности имеет общий недостаток — в него введена предельная величина КИН (вязкость разрушения), что для его практического использования при анализе процесса усталостного разрушения элементов авиационных конструкций вносит существенную неопределенность. Как было показано в главе 2, предельное состояние элемента конструкции с усталостной трещиной определяется широким спектром величин вязкости разрушения, поскольку она существенно зависит от условий нагружения. Не менее сложным является вопрос об определении величины показателя степени в соотношении (4.4). Он не может быть рассмотрен как интегральная характеристика затупления трещины по некоторому отрезку ее фронта с переменной кривизной и ориентировкой направления локального подрастания трещины. Тем более что параметры зоны затупления (зоны вытягивания) — ее высота и ширина — тоже существенно зависят от условий нагружения, например от температуры (см. главы 2 и 3). Наконец, как было показано выше, пластическое затупление вершины трещины происходит в каждом мезотуннеле индивидуально . Оно существенно зависит от того, каким образом сформированы перемычки между мезотунне-лями. Перемычки не только определяют условия раскрытия вершины мезотуннеля, но и влияют на величину скорости роста трещины, при которой  [c.189]


Применительно к элементам авиационных конструкций, изготавливаемых из высокопрочных сталей с пределом прочности более 1800 МПа, имеющих структуру МР, развитие усталостных трещин в окружающей среде происходит по фаницам зерен с разной интенсивностью формирования продуктов коррозии в виде окислов в направлении роста трещины. Так, например, разрушение шлиц-шарнира опоры шасси самолета Ту-154Б произошло в эксплуатации по механизму коррозии под напряжением (рис. 7.30). Деталь изготовлена  [c.387]

В зависимости от температуры окружающей среды и уровня напряжения в изломах элементов авиационных конструкций из алюминиевых сплавов можно наблюдать блоки мезолиний усталостного разрушения, которые имеют резкие границы и напоминают хрупкие усталостные бороздки (рис. 7.34). На самом деле это не хрупкие усталостные бороздки, что не характерно для разрушения алюминиевых сплавов, а границы резкой смены уровня напряжения в процессе роста трещины, когда роль агрессивной среды в их формировании была существенной.  [c.390]

Применительно к магниевым сплавам, из которых изготавливают несиловые элементы авиационных конструкций, усталостные разрушения на воздухе деталей в условиях эксплуатации сопровождаются сильным окислением излома. Исследования этих сплавов на воздухе и в вакз ме показали, что усталостные бороздки формируются в изломе магниевых сплавов в вакууме, тогда как на воздухе они не формируются [139-141]. Этот эффект обусловлен тем, что процесс окисления материала на воздухе даже без активного воздействия на материа.л в вершине трещины продуктов распада в виде кислорода, водорода и прочее вызывает резкое изменение механизма разрушения. Отсутствие окислительной среды позволяет реализовать процесс ротационной пластической деформации при развитии трещины, что приводит к формированию усталостных бороздок в вакууме.  [c.390]

Решение о выборе метода воздействия на элемент авиационной конструкции приходится принимать на этапе формирования технологии ремонта или бюллетеня эксплуатационных осмотров. Стратегия выбора метода, его эффективность зависят от возможностей ремонтных подразделений, а также от понимания персоналом природы реализуемых операций над конструктивным элементом для торможения роста трещин. Так, например, самым известным воздействием на элемент конструкции с трещиной является операция просверливания отверстия в ее вершине. Для усталостных трещин реализация данной операции означает, что удаляется зона пластической деформации, которая имеет остаточные сжимающие напряжения. Поэтому после данной операции трещина может развиваться даже более интенсивно, хотя само отверстие уменьшает концентрацию напряжений. При хрупком разрушении достаточно снижения концентрации напряжений для значительной задержки трещины, тогда как для усталостного разрупте-ния этого оказывается совершенно не достаточно.  [c.443]

Для вероятностной оценки сроков службы по критерию сопротивления усталостному разрушению и для описания надежности элементов конструкций в условиях эксплуатации Я. Сед-лачек [75] предложил использовать статистическое описание процесса усталости при стационарном переменном нагружении, позволяющее охарактеризовать рассеяние сроков службы элементов конструкций. Для нестационарной нагруженности, описываемой фиксированной функцией распределения величин измеренных напряжений Б. Лундберг [66] предложил определять допустимые сроки службы элементов авиационных конструкций в зависимости от требований к их надежности, используя линейное суммирование повреждения и кривые усталости с вероятностной оценкой разрушающего числа циклов.  [c.255]

Изложенное выше особенно актуально для авиационных кон-струкций, многие элементы которых работают в условиях высоких силовых и температурных воздействий. Стремление же -к уменьшению веса конструкции приводит к необходимости использовать высокопрочные материалы, имеющие, как правило, более высокую чувствительность к концентрации напряжений. Недостаточно строгая оценка напряженного состояния и условий прочности в зоне концентрации при проектировании может послужвть причиной разрушения высоконапряжеиных элементов авиационных конструкций и повлечь за собой тяжелые последствия.  [c.7]

Первые работы в СССР по малоцикловой усталости элементов авиационных конструкций были выполнены Н. И. Мариным (1946). Эксперименты, проведенные на цилиндрических трубах (со сварными швами и без них) и пластинах с отверстием, показали, что сопротивление мало-дикловому разрушению, выраженное номинальными разрушающими напряжениями, оказывается ниже сопротивления разрушению при однократном статическом нагружении, в зависимости от механических свойств материала и уровня концентрации напряжений.  [c.411]

В промышленном бериллии содержатся металлические фазы (в частности, металлид на основе алюминия, способный образовывать легкоплавкую эвтектику), вызывающие разрушение бериллия при 500—650°С [28]. Это ухудшает работоспособность конструкций, например деталей теплопоглощающих элементов авиационных тормозов, которые должны обладать повышенной стойкостью к тепловым ударам и не растрески-  [c.70]

Оценка прочности самолетов, нагружения их конструкции в полете вызывалась, с одной стороны, желанием конструкторов убедиться в величине действующих в элементах усилий, а с другой, накопить материалы для подтверждения нормируемых нагрузок, уточнения норм прочности. Простейшим, хотя и косвенным, был впервые примененный А. И. Макаревским [12] метод определения деформаций крыла с последующим сопоставлением с деформациями, оцененными расчетными методами или в условиях статических испытаний на земле. Существенный вклад в обобщение методов исследований вибрации конструкций внесла монография А. В. Чесалова [13]. К числу драматических эпизодов из области летных испытаний авиационных конструкций на прочность нужно отнести смелый и рискованный испытательный полет С. Н. Анохина с доведением до предельных нагрузок или флаттера и разрушения планера Рот Фронт на одном из Всесоюзных планерных слетов в Коктебеле. Единственным объективным свидетелем условий разрушения был сам летчик, гарантии сохранения жизни которого тогда, по-видимому, никто не давал. Он был выброшен из кабины и благополучно приземлился на парашюте. Наблюдатели с земли зафиксировали лишь факт разрушения планера.  [c.316]

Несмотря на то, что в настоящее время не существует универсального критерия прочности для композиционных материалов, состояние этой проблемы таково, что конструктор имеет возможность с достаточной стрпенью точности предсказывать начало разрушения, а в некоторых случаях и предельную нагрузку рассматриваемых элементов конструкций. В этой главе были изложены апробированные аналитические методы определения напряженного состояния и прочности композиционных материалов, основанные на теории слоистых сред и классических критериях разрушения. Достоверность этих методов подтверждается практикой их использования при расчете авиационных и космических конструкций, и поэтому они рекомендуются расчетчикам и проектировщикам. Одпако ограничения и допущения, принятые при построении методов расчета и формулировке критериев разрушения, всегда следует иметь в виду и применять те расчетные критерии, при которых эти ограничения не оказывают существенного влияния на результаты окончательного расчета.  [c.104]


Оценка сопротивления машин и конструкций хрупкому разрушению, базирующаяся на силовых и энергетических критериях линейной механики разрушения, оказалась возможной для несущих элементов, изготавливаемых из материалов повышенной прочности и низкой пластичности (низколегированные высокопрочные закаленные и низкоотпущенные стали для авиационных и ракетных конструкций, упрочненные алюминиевые и титановые сплавы для авиационных, судовых и энергетических конструкций). В этом случае номинальные разрушающие напряжения в ослабленных сечениях не превышают предела текучести конструкционного материала, который обычно составляет 0,90-0,95 предела прочности.  [c.69]

Среднелегированные стали обладают высокими прочностными и пластическими характеристиками, повышенной стойкостью против хрупкого разрушения и некоторыми специальными свойствами. Прочность таких сталей 800... 2000 МПа, поэтому их используют в ответственных конструкциях, например в авиационной технике, химическом и энергетическом машиностроении и др. При изготовлении ряда конструкций материал должен также сохранять прочностные характеристики при высоких температурах и длительном воздействии постоянных нагрузок. Для повышения жаропрочности сталей в их состав дополнительно вводят такие легируюшие элементы, как молибден, вольфрам, ванадий, повышающие температуру рекристаллизации стали. В отожженном состоянии предел прочности стали 25ХНВФА, в состав которой входят вольфрам и ванадий, 850 МПа при 5 = 1,5 %. После закалки с температурой 910 °С в масле и последующего отпуска при 350 °С получают Ов = 1400 МПа, 5 = 10 %. При высокой прочности сталь обладает достаточной пластичностью и хорошо сохраняет свои прочностные характеристики При нагреве. Так, при температуре 300 °С прочность составляет 90 %, а при 500 °С — 50 % от исходной.  [c.298]


Смотреть страницы где упоминается термин Разрушение элементов авиационных конструкций : [c.79]    [c.340]    [c.300]    [c.304]    [c.22]    [c.68]   
Смотреть главы в:

Справочник авиационного инженера  -> Разрушение элементов авиационных конструкций



ПОИСК



Конструкция Разрушение

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте