Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы однородные

Примером, когда такое предположение соблюдается, может служить тепловой излучатель. Аналогичное утверждение справедливо для процессов вынужденного испускания и поглощения при тепловом равновесии, если только это равновесие не будет существенно нарушенным именно вследствие рассматриваемых процессов излучения. При сделанных предположениях процессы однородного и неоднородного уширения действуют одинаковым образом, так что их нельзя непосредственно отличить друг от друга путем измерений. Если же рассматривать ансамбли под действием сильных полей излучения, то необходимо будет учесть неравновесные распределения, обусловленные взаимодействием с излучением,  [c.26]


Пространство фазовое 30 Процессы однородные 52  [c.438]

В теории обработки металлов давлением под термином предел текучести обычно понимают истинное нормальное напряжение, т. е. усилие, отнесенное к площади сечения образца в данный момент и приводящее его в пластическое состояние в процессе однородного линейного растяжения при данной температуре с определенной скоростью и степенью деформации.  [c.76]

Вначале следует сделать замечание, касающееся полуклассического описания взаимосвязи между поляризацией и напряженностью электрического поля (которая представлена в 2.3). Полученные там для процессов однородного уширения результаты могут быть перенесены на случай неоднородно уширенных систем для этой цели следует воспользоваться сказанным после уравнения (3.11-40) и ввести эффективные функции формы. Если считать процессы квазистационарными и пренебречь изменением населенностей, вызванным действием излучения, то процессы однородного и неоднородного уширения создают одни и те же эффекты, и поэтому их невозможно отличить друг от друга в эксперименте при однофотонных (а также и при многофотонных) процессах. По указанным причинам мы будем в дальнейшем рассматривать величины и соотношения, непосредственно относящиеся к эксперименту. (В п. 3.125 и разд. 3.21 мы обсудим также и такие процессы, при которых механизмы однородного и неоднородного уширения линий вызывают экспериментально обнаруживаемые эффекты.)  [c.286]

Изучение и анализ технологических процессов показывают, что каждый из них или группа процессов, однородных по кинематике относительных движений режущих инструментов и обрабатываемых деталей, обладает рядом особенностей, использование которых позволяет сократить время изготовления изделий.  [c.363]

На точность настройки также влияет степень постоянства всех действующих факторов процесса однородность обрабатываемого материала, соблюдение общих и операционных припусков, правильность и чистота базирующих поверхностей, зажимные усилия, износ инструмента.  [c.69]

Относительные критерии используют в дополнение к абсолютным. Самостоятельного значения для оценки технологических вариантов они не имеют. Если сопоставляемые технологические процессы однородны по структуре, то их сравнивают и оценивают по операциям, имеющим различное построение. В этом случае в качестве критерия оценки можно использовать величины Со, 11о ит]з.  [c.283]

При непрерывном процессе однородность химического состава и постоянство температуры достигаются большим скоплением чугуна, превышаюш,им часовую производительность вагранки в 2,5—3 раза. Преимущество этого способа состоит в том, что для процесса достаточно одной электропечи. Более однородный чугун по химическому составу и температуре получается при периодической работе, когда одну печь наполняют, а чугун второй печи после доводки разливают.  [c.288]


Колонну загружают сферическим катализатором со средним размером зерен 1,5 мм. Высокая плотность газа при 30 МПа и наличие теплообменных поверхностей в реакционном объеме позволяют вести процесс при числах псевдоожижения 1,5 и ниже, не нарушая однородной структуры псевдоожиженных слоев. Процесс протекает вблизи оптимальных температур, достигаемых зп счет ступенчатости и ввода противоточных теплообменников в слои катализатора.  [c.13]

Очевидно, что полученные критериальные зависимости (4-31) —(4-34) справедливы для всех подобных процессов осредненного течения газовзвеси и что их конкретный, расчетный вид можно определить лишь на основе экспериментов. Заметим также, что уравнение (4-31) позволяет оценить потерю давления в потоках газовзвеси, а уравнения (4-32) — (4-34)—структуру дисперсной проточной системы. При отсутствии дискретного компонента (р—>-0, da—>-0) критериальные уравнения приобретают обычное для однородных сред выражение, а функции (4-33) и (4-34), естественно, вырождаются в нуль. При исследовании турбулентных течений (см. гл. 3) необходимо дополнительно оценивать степень или интенсивность турбулентности, определяемую как отношение среднеквадратичного отклонения скорости к средней скорости или как число Кармана (Ка)  [c.122]

Разбирая процесс кристаллизации твердого раствора по диаграмме, приведенной на рис. 96, мы видели, что состав твердого раствора и жидкости изменяется непрерывно. Ранее выделившиеся кристаллы более богаты тугоплавким компонентом, чем образовавшиеся позднее при меньшей температуре. Твердая фаза в процессе равновесной кристаллизации должна быть все время однородной, поэтому предполагается, что процесс выравнивания состава твердой фазы (путем диффузии) не будет отставать от процесса кристаллизации. Однако обычно при кристаллизации твердых растворов первые кристаллы имеют более высокую концентрацию тугоплавкого компонента, чем последующие. Вследствие этого ось первого порядка дендрита содержит больше тугоплавкого компонента, чем ось второго порядка, и т. д. Междендритные пространства, кристаллизовавшиеся последними, содержат наибольшее количество легкоплавкого компонента, и поэтому они самые легкоплавкие. Описанное явление носит название дендритной ликвации. Состояние дендритной ликвации является неравновесным, неоднородный раствор имеет более высокий уровень свободной энергии, чем однородный. При длительном нагреве сплава дендритная ликвация может быть в большей или меньшей степени устранена диффузией, которая выравнивает концентрацию во всех кристаллах.  [c.138]

В точке 2 количество жидкой фазы становится равным нулю, процесс кристаллизации заканчивается, образуется однородный твердый раствор -а. Вновь сплав испытывает превращение в интервале температур 3—4, когда а-твердый раствор превращается в -твердый раствор. Концентрация фаз изменяется в соответствии с положением линий HN и JN.  [c.169]

Для получения однородного по составу (гомогенного) аусте-нита при нагреве требуется не только перейти через точку окончания перлито-аустенитного превраш,ения, но и перегреть сталь выше этой точки, или дать выдержку для завершения диффузионных процессов внутри аустенитного зерна.  [c.237]

В первом случае в результате хаотического теплового движения отдельные атомы основного металла время от времени меняют места в своей кристаллической решетке, совершая перескок из одного положения в другое. Этот процесс перемещения однородных атомов происходит непрерывно и хаотически по направлению и не изменяет концентрации.  [c.320]

Сварка — технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, пли пластическом деформировании, или совместным действием того и другого. Сваркой соединяют однородные и разнородные металлы и их сплавы, металлы с некоторыми неметаллическими материалами (керамикой, графитом, стеклом и др.), а также пластмассы.  [c.182]


Основные параметры сварки трением скорость относительного перемещения свариваемых поверхностей, продолжительность на- рева, удельное усилие, пластическая деформация, т. е. осадка. Требуемый для сварки нагрев обусловлен скоростью вращения и осевым усилием. Для получения качественного соединения в конце процесса необходимо быстрое прекращение движения и приложение повышенного давления. Параметры режима сварки трением зависят от свойств свариваемого металла, площади сечения и конфигурации изделия. Сваркой трением соединяют однородные и разнородные металлы и сплавы с различными свойствами, например медь со сталью, алюминий с титаном и др. На рис. 5.4] показаны основные типы соединений, выполняемых сваркой трением. Соединение получают с достаточно высокими механическими свойствами. В про-  [c.222]

Заготовка в виде штамповки получается ковкой в штампах последняя имеет значительные преимущества перед свободной ковкой. В штампованной заготовке структура металла более однородна, благодаря чему деталь будет более прочной. Штамповкой получаются размеры, наиболее близкие к окончательным в некоторых производствах штампованные заготовки используются без дальнейшей механической обработки или с очень незначительной обработкой. При изготовлении штамповок лучше используется металл и уменьшается расход его. Процесс изготовления штамповок по сравнению с ковкой значительно быстрее и требует менее квалифицированной рабочей силы. Себестоимость штампованных заготовок меньше, чем кованых.  [c.92]

Клепку (осаживание стержня) можно производить вручную или машинным (пневматическими молотками, прессами и т. п.) способом. Машинная клепка дает соединения повышенного качества, так как она обеспечивает однородность посадки заклепок и увеличивает силы сжатия деталей. Стальные заклепки малого диаметра (до 10 мм) и заклепки из цветных металлов ставят без нагрева — холодная клепка. Стальные заклепки диаметром больше 10 мм ставят горячим способом — горячая клепка. Нагрев заклепок перед постановкой облегчает процесс клепки и повышает качество соединения (достигается лучшее заполнение отверстия и повышенный натяг в стыке деталей, связанный с тепловыми деформациями при остывании).  [c.50]

Вопрос О пространственной идеализации обусловлен тем, что в настоящее время практически могут быть решены только двумерные задачи, в которых предполагается, что поля температур, напряжений и деформаций меняются только по рассматриваемому сечению тела и однородны в направлении, перпендикулярном этому сечению. В общем случае, строго говоря, процесс деформирования при сварке может быть описан только посредством решения трехмерных краевых задач, так как температура при многопроходной сварке неравномерно распределена как по поперечному относительно шва сечению сварного элемента, так и в направлении вдоль шва.  [c.280]

Этот вопрос решается посредством принятия допущения об одновременном выполнении каждого прохода по всей длине шва. В этом случае поле температур и напряжений становится однородным вдоль шва и задача сводится к двумерной. Такое допущение, в общем, вполне приемлемо именно при определении остаточных (не временных) сварочных напряжений в связи со следующими обстоятельствами. Формирование ОСН начинается с момента приобретения разупрочненным материалом упругих свойств. Следовательно, процессы деформирования, происходящие в районе источника сварочного нагрева, не оказывают влияния на ОСН и этот район можно исключить из рассмотрения. В области за источником нагрева, где материал приобрел упругие свойства, градиент температур вдоль шва уже незначительный и НДС здесь можно считать близким к однородному.  [c.280]

При реакции полимеризации процесс уплотнения однородных молекул в одну протекает без выделения побочных продуктов реакции по схеме  [c.391]

Регистрационные методы не требуют проведения специального выборочного обследования и основаны на анализе информации, регистрируемой в процессе управления предприятием (результаты контроля точности технологических процессов, число принятых партий, число дефектов и т. п.). Эта информация должна удовлетворять требованиям достоверности и однородности, а также быть достаточной для оценки значения искомого показателя.  [c.66]

Поскольку концентрация примеси в различных фазах различна, в процессе конденсации или испарения происходит изменение состава пара над жидкостью. Газовая диффузия способствует восстановлению однородности состава, однако точка кипения смещается. Направление смещения зависит от относительной летучести примеси и от того, имеет ли место конденсация или испарение. Летучие примеси, такие, как азот, существенно понижают точку кипения при конденсации по сравнению с испарением. Криостат для реализации кислородной точки мало отличается от показанного на рис. 4.18. Подробное его описание можно найти в работах [25, 38].  [c.162]

Основная причина появления термоупругих напряжений заключается в том, что если деформации термического расширения не удовлетворяют кинематическим ограничениям, то появляются дополнительные деформацни, уже связанные с напряжениями, такие, что суммарные деформации удовлетворяют этим ограничениям. Для кольца таким ограничением служит уравнение совместности деформаций (7.3). Как правило, температурное поле в начале и конце процесса однородно, т. е. Д7 = onst. Решение уравнения совместности деформаций, записанного в напряжениях а , для однородного перепада температур приведено в п. 7.2.4. Проанализируем полученные зависимости. При свободном охлаждении (АГ < 0) максимальные радиальные напряжения достигаются на радиусе  [c.469]

Процесс перемагничивания зависит от особенностей кристаллического и фазового строения материала, от степени его однородности, наличия в нем дефектов, включений и т. д. Наиболее трудным процессом перемагничивания, т. е. требующим наиболее высоких значений внешнего размагничивающего поля, является процесс однородного вращения векторов намагниченности материала. В этом случае предельные значения коэрцитивной силы Нсм должны Д0СТПГЯТ1. п.ч пряженности поля анизотропии Нсм= К IМя в одноосном материале с высокой магнитокристаллической анизотропией и Нсм=Мд12 — в материале, состоящем из однодоменных частиц с высокой анизотропией формы, разделенных немагнитными прослойками.  [c.46]


Однако процесс однородного вращения векторов намагниченности может осуществляться лишь в материалах с высокой степенью однородности состава и структуры, например в бездислокационных кристаллах ( усах ), В реальных материалах — сплавах и соединениях— имеются места с локальными искажениями фазовой и кристаллической структуры и соответственно с измененными значениями константы анизотропии и обмена. В магнитотвердых материалах с высокой магннтокристаллической анизотропией процесс перемагничивания осуществляется в основном путем образования зародышей обратной магнитной фазы и движения доменных границ, а в материалах со структурой из совокупности однодоменных частиц — неоднородным вращением векторов намагниченности в отдельных частицах. Поэтому коэрцитивная сила реальных магнитотвердых материалов составляет лишь часть поля анизотро-  [c.46]

Следующий по сложности случайный процесс — однородная депь Маркова с конечным числом состояний аь ., о и дискретным временем. Ее реализации тоже являются двусторонними или односторонними последовательностями символов из А, поэтому непосредственное задание данного случайного процесса тоже сводится к введению в Qn некоторой нормированной меры ц, инвариантной (жгносительно а (и согласованной с топологией). Описывать ее построение я не буду (см. т. 2), отмечу только, что если вероятность перехода из состояния а< в а,- равна нулю, то множество всех последовательностей, в каждой из которых хоть один раз а,- идет следом за а , имеет меру нуль. Зто подсказывает следующий топологический аналог.  [c.160]

Взаимодействие турбулентных потоков жидкого и дискретного компонентов в значительной мере предопределяет интенсивность различных процессов переноса для дисперсных систем. Очевидно, что раскрытие закономерностей этого взаимодействия и на этой основе разработка методов управления процессами транспорта, тепло- и массообмена и пр. требует развития теории турбулентности подобных макронеоднородных систем. Характерная особенность такой тео1рии в отличие от теории турбулентности однородной среды заключается в необходимости рассмотрения по крайней мере двух из многих случаев взаимосвязанных задач.  [c.100]

Аналитические и экспериментальные исследования сложных пульсационных процессов в дисперсных потоках рассматриваются также в работах Дюнина, Борщевского и др. [Л. 123, 33]. Методика экопериментальных исследований влияния концентрации на осредненные и пульсационные скорости приведена в Л. 226, 235] К сожалению, прямые данные, указывающие на наличие обратного, дестабилизирующего эффекта, т. е. дополнительного возмущения частицами дисперсного потока, немногочисленны [Л. 239, 365,]. Представления, основанные на закономерности процессов энергопереходов в турбулентном однородном потоке в ряде случаев необосно-110  [c.110]

Для сыпучей среды, гравитационно движущейся в режиме плотного слоя, характерно увеличение давления на боковые стенки канала при переходе слоя в движение небольшие усилия, воспринимаемые дном канала и равные лишь весу частиц в подсводном пространстве независимость расхода слоя в процессе его свободного истечения от высоты слоя (в отличие от однородных жидкостей), если H n>Do , пульсационный, периодический характер медленного опускания слоя, отмеченный и совершеннно не объясненный Грегори как движение с зависанием и проскальзыванием [Л. 130, 184], и пр.  [c.307]

X у (средняя область концентраций). На поверхности этой системы могут образовываться а) отдельные слои соединений двух металлов б) слой смеси окислов в) слой двойного соединения типа шпинели, иапример MtMe On- Поведение сплавов при образовании на них однородных слоев (области концентраций 1 и 2), когда ионы легирующего металла растворимы в поверхностном соединении основного металла, может быть описано для диффузионного механизма процесса теориями Вагнера—Хауффе и Смирнова.  [c.83]

На рис. 1.10 представлены распределения полей пластических деформаций и напряжений в диске в процессе его нагружения (т=4,8 мкс, Иг(г=йо =0,24 мм, евв1г=л =Ыг/Ло = 3 %, где Ur—перемещение по оси г еее — окружная деформация). Видно, что распределение НДС по сечению диска неоднородно и имеет ряд особенностей. Так, если в центральной части диска распределение всех компонент деформации достаточно однородно по высоте диска, то при выходе на поверхность диска со стороны внутреннего отверстия радиальная е и осевая  [c.40]

Здесь и далее под структурным элементом будем понимать регулярный объем поликристаллического материала следующего масштабного и структурного уровня. С одной стороны, это — минимальный объем, который может быть наделен средними макроскопическими механическими свойствами материала, с другой — максимальный объем, для которого можно принять НДС однородным. Наконец, такой элемент определяется структурным уровнем, необходимым для анализа элементарного акта макроразрушения. Для рассматриваемых задач минимальный размер такого структурного элемента соответствует диаметру зерна поликристалла. Таким образом, поликристалличес-кий материал будем представлять как совокупность структурных элементов с однородными механическими свойствами и однородным НДС. Следует отметить, что такая схематизация наиболее наглядно работает при анализе процессов повреждения и разрушения в неоднородных полях напряжений и деформаций, например у вершины трещины целесообразность данного здесь определения структурного элемента будет показана ниже в настоящей главе, а также в главах 3 и 4.  [c.116]

Периодически изменяющия-ся субмикроскопнческая неоднородность жидкости вследствие теплового двимсе-ния молекул (флуктуации) Возможность протекания чередующихся анодных и катодных процессов на идеально однородных поверхностях металлов  [c.22]

В используемых в САПР методах формирования ММС принято моделируемую систему представлять в виде сово-К)шности физически однородных подсистем. Каждая подсистема описывает процессы определенной физической природы, например механические, электрические, тепловые, гидравлические. Как правило, для описания состояния одной подсистемы достаточно применять фазовые переменные двух типов — потенциала и потока. В первых столбцах табл. 4.1 конкретизированы типы фазовых переменных применительно к ряду встречающихся подсистем.  [c.167]

Герметичные ячейки, подробно здесь рассмотренные, приспособлены для градуировки термометров капсульного типа. Для градуировки стержневых термометров в тройной точке аргона, являющейся в настоящее время альтернативной точке кипения кислорода, создана эквивалентная герметичная ячейка [14]. На рис. 4.21 показана такая ячейка вместе с устройством для охлаждения и реализации тройной точки аргона. Пр и комнатной температуре давление аргона в ячейке составляет около 56 атм. Она заполнена аргоном таким образом, чтобы в тройной точке нижняя чаеть ячейки была заполнена твердым или жидким веществом. В процессе работы ячейка первоначально погружается в жидкий азот так, чтобы аргон замерзал в ее нижней части. Когда это происходит, ячейка полностью заливается азотом. Затем сосуд с азотом герметизируется и в нем устанавливается давление, соответствующее температуре тройной точки аргона (83, 798 К). Для этой цели в верхней части сосуда имеется клапан. При такой процедуре давление азота возрастает от 101 325 Па при 77,344 К до 130 кПа при 83,798 К. Этим методом можно реализовать тройную точку аргона, используя для наблюдения за ней стержневой платиновый термометр. Для уменьщения влияния неоднородности температуры ванны жидкого азота ячейка покрывается слоем пенопласта. Точность реализации тройной точки аргона описанным методом не столь высока, как в ячейках для капсульных термометров, из-за недостаточной однородности температурного поля ванны. Тем не менее она находится в пределах 1 мК, и поэтому ячейка типа показанной на рис. 4.21 представляется хорошим конкурентом аппаратуре для реализации точки кипения. кислорода.  [c.166]



Смотреть страницы где упоминается термин Процессы однородные : [c.282]    [c.193]    [c.209]    [c.70]    [c.284]    [c.8]    [c.58]    [c.196]    [c.202]    [c.378]    [c.423]    [c.50]    [c.186]    [c.23]    [c.341]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.52 ]



ПОИСК



Аксиома диссипации. Калория. Однородные процессы

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ОПИСАНИЯ ТУРБУЛЕНТНОСТИ СПЕКТРАЛЬНЫЕ ФУНКЦИИ Спектральные разложения стационарных процессов и однородных полей

Обобщение результатов экспериментального исследования трещиностойкости однородного металла и имитационное моделирование процесса разрушения

Однородность тел

РД 50—64—84. Методические указания по разработке государственных стандартов, устанавливающих номенклатуру показателей качества групп однородной продукции —84. Методические указания. Определение экономической эффективности стандартов с перспективными требованиями на группы однородной продукции —85. Методические указания. ЕСТПП. Аттестация технологических процессов —86. Положение об организации работы Государственной приемки ГОСТ

Случайный процесс гауссовский статистически однородный

Случайный процесс пространственно однородный

Спектральные разложения стационарных процессов и однородных полей

Стационарные случайные процессы и однородные случайные поля

ТЕРМОМЕХАНИКА Термодинамика однородных процессов

Уравнение движения. Поправки первого порядка. Примеры применения метода возмущений. Характеристический импеданс. Вынужденные колебания. Однородная струна. Установившийся режим Процесс установления Влияние податливости точек закрепления

Характеристические функции и характеристический функциоМоменты гидродинамических полей. Стационарные случайные процессы и однородные поля



© 2025 Mash-xxl.info Реклама на сайте