Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства элементов и их важнейших соединений

СВОЙСТВА ЭЛЕМЕНТОВ И ИХ ВАЖНЕЙШИХ СОЕДИНЕНИЙ  [c.280]

В табл. 10 приводятся данные, которые характеризуют основные свойства простых веществ (элементов п свободном виде) и их важнейших соединений.  [c.280]

СВОЙСТВА ВАЖНЕЙШИХ ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ  [c.1]

Обзор свойств важнейших элементов и их соединений дополняет таблицу физических констант неорганических соединений. Для элементов указаны нахождение в природе, внешний вид, основные химические свойства, главные соединения, применение. Элементы семейства актинидов, кроме ТЬ и и, находяш,их применение при получении внутриатомной энергии, выделены в отдельную группу.  [c.1]


Свойства важнейших элементов и их соединений  [c.3]

В формулировке Д.И. Менделеева периодический закон гласил. Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов . Своим открытием Д.И. Менделеев впервые показал, что многообразие существующих в окружающем нас материальном мире элементов - не случайный набор, а единая система, периодическая по своим свойствам. Самым важным оказалось, что установленный Д.И. Менделеевым естественный ряд химических элементов, расположенных по возрастанию их атомных весов, практически совпал с рядом элементов, расположенных по увеличению зарядов их ядер, т.е. по увеличению их порядковых номеров. Таким образом, свойства элементов периодически изменяются по мере роста заряда ядер их атомов. С познанием законов микромира стало ясно, что периодичность в химических свойствах элементов обусловлена квантовой периодичностью.  [c.16]

Помимо Сг и А1, суперсплавы содержат множество важных легирующих элементов, к их числу относятся Мп, Ti, Si и все тугоплавкие металлы. Во многих случаях эти элементы оказывают существенное влияние на стойкость к окислению у сплавов, формирующих соединения r Oj или AI Oj. В данном разделе мы рассмотрим сведения о влиянии этих элементов на окислительные свойства некоторых модельных сплавов.  [c.30]

В методах сосредоточенных параметров или конечных элементов реальная физическая система с распределенными параметрами заменяется ее моделью в виде совокупности дискретных элементов. Например, рассмотренная здесь консольная балка представляется в виде конечного числа сосредоточенных масс, расположенных в ряде точек и соединенных между собой невесомыми упругими элементами с одинаковыми свойствами. При этом уравнения движения обычно получают методом Лагранжа. Важнейшим преимуществом методов конечных элементов является их гибкость, позволяющая применять их при анализе сложных конструкций. Таким образом, при исследовании новой системы проблема заключается в выборе для нее наиболее подходящей модели с сосредоточенными параметрами, а не в разработке совершенно нового метода анализа.  [c.428]

Химический состав материалов в значительной мере определяет как их механические показатели, так и технологические свойства. Одним из важнейших технологических свойств конструкционных сталей является их свариваемость. Это свойство в значительной мере определяет качество изготовления и ремонта сварных металлоконструкций и наличие дефектов в их сварных соединениях. Свариваемость сталей оценивается величиной так называемого углеродного эквивалента С , допустимый диапазон которого указывается в нормативной документации на конкретное оборудование. Так, для основных несущих элементов вертикальных цилиндрических стальных резервуаров для нефти и нефтепродуктов по ПБ 03-605-03 углеродный эквивалент стали с пределом текучести 390 МПа и ниже для ос-  [c.189]


Введение в сталь легирующих элементов меняет их свойства и в значительной мере влияет на условия сварки и свойства сварных соединений. Легирующие элементы по-разному взаимодействуют с железом и углеродом— основными компонентами стали. С железом легирующие элементы дают растворы замещения. Взаимодействие их с углеродом более сложно. С одной стороны многие лег -(рующие элементы или непосредствен-ао образовывают с углеродом карбид легирующего элемента или заменяют часть атомов железа в карбиде железа. С другой стороны, образуя растворы замещения и заменяя в кристаллической решетке часть атомов железа, легирующие элементы изменяют энергетические условия взаимодействия с решеткой внутренних атомов углерода. Следовательно, легируя феррит и меняя уровень энергетических связей, легирующие элементы меняют температуру полиморфных преврашений, что особенно важно при быстропротекающем нагреве стали при сварке, а при охлаждении влияют на процесс распада аустенита.  [c.10]

В табл. 2, 3 и табл. 1 в статье Периодическая система Д. И. Менделеева, структура и свойства элементов (стр. 268—274) приведены данные об элементарных ячейках наиболее важных металлов, их соединений и некоторых неметаллических элементов, коэффициент заполнения п (отношение объема, занимаемого атомами, к объему элементарной ячейки) и координационное число — к. ч, (число ближайших соседних атомов в решетке).  [c.128]

Исследования строения и структуры, термодинамических, физико-химических, теплофизических и других свойств тугоплавких соединений и сплавов на их основе представляют большой теоретический и практический интерес. Особо важным в этом плане является исследование карбидных фаз переходных металлов IVA—VIA групп периодической системы элементов, обладаюш их самыми высокими температурами плавления и рядом других ценных физических и физико-химических свойств, благодаря которым эти соединения находят широкое применение в различных отраслях новой техники [1].  [c.142]

Место установки муфты непосредственно влияет на ее габариты на быстроходных валах меньше крутящий момент, поэтому габаритные размеры муфты будут меньше, меньше ее масса и момент инерции, упрощается управление муфтой (например, сцепной). Если соединение привода и исполнительного механизма выполнено не на общей раме, от муфты требуются в первую очередь сравнительно высокие компенсирующие свойства без повышенных требований к малому моменту инерции. Важным показателем муфт является их компенсирующая способность, зависящая от величины возможного взаимного перемещения сопряженных деталей (см. рнс. 15.1) или от величины допускаемых упругих деформаций специальных податливых элементов ([А] — допускаемое осевое смещение [е] — допускаемое радиальное смещение [а] — допускаемый угол перекоса). Предохранительные муфты устанавливают на тихоходных валах, чем достигается надежность защиты деталей привода от перегрузки и повышение точности срабатывания муфты, пропорциональной величине крутящего момента. Муфты располагают у опор и тщательно балансируют. При монтаже добиваются соосности соединяемых валов. Комбинированные муфты, выполняющие упруго-компенсирующие и предохранительные функции (и другие) объединяют качества двух и более простых муфт. Специальные муфты часто конструируются с использованием стандартных элементов (пальцев, втулок, упругих оболочек, штифтов и др.). Проверочный расчет наиболее важных деталей муфты, определяющих ее работоспособность, производится только в ответственных случаях при необходимости изменения их размеров или же применения других материалов. При подборе стандартных муфт  [c.374]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]


Если в результате затвердевания получается твердый раствор или механическая смесь различных кристаллов (включающих твердые растворы, чистые элементы или химические соединения), то, конечно, очень важно знать, будут ли при охлаждении (а равно и при нагреве) эти кристаллы оставаться неизменными или их состав, строение, а следовательно, и свойства будут изменяться. Если такие изменения (превращения) будут иметь место, то при каких температурах они будут начинаться и кончаться Совершенно очевидно, что если изменение в строении сплава, находящегося в твердом состоянии, невозможно, то термическая обработка в подавляющем большинстве случаев теряет всякий смысл.  [c.30]

Большое влияние на свариваемость металлов и сплавов оказывает их химический состав. Это особенно наглядно видно на примере железоуглеродистых сплавов. Свариваемость углеродистой стали изменяется в зависимости от содержания основных примесей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуглеродистые стали (С<0,25%) свариваются хорошо. Среднеуглеродистые стали (С <0,35%) также свариваются хорошо. Стали с содержанием С>0,35% свариваются хуже. С увеличением содержания углерода в стали свариваемость ухудшается. В околошовных зонах появляются закалочные структуры и трещины, а шов получается пористым. Поэтому для получения качественного сварного соединения возникает необходимость применять различные технологические приемы. Марганец не затрудняет сварку стали при содержании его 0,3...0,8%. Однако при повышенном содержании марганца (1,8...2,5%) прочность, твердость и закаливаемость стали возрастают, и это спо-  [c.38]

В первой главе обобщены сведения по фундаментальным электронным свойствам нитридов р-элементов III группы — базисных соединений огромного числа нитридных неметаллических керамик. Результаты современных исследований природы и механизмов воздействия на функциональные характеристики этих фаз структурных и химических дефектов, наиболее типичнь1х для реальных нитридных материалов, суммированы в главе 2. Наряду с кристаллическими фазами, рассмотрены ндвые — нанотубулярные формы нитридов. С их разработкой связаны большие надежды по созданию принципиально нового класса материалов высоких технологий. Главы 3,4 посвящены обсуждению второй важнейшей группы неметаллических тугоплавких соединений — нитридам углерода и кремния в кристаллическом,  [c.3]

Применение циркония в металлургии обусловлено тем, что он является одним из энергичнейших раскислителей стали. Кроме того, связывая в прочные соединения азот и серу, цирконий, нейтрализует их вредное влияние на сталь. В сочетании с другими легирующими присадками цирконий повышает вязкость, прочность, износостойкость и свариваемость стали. Присаживают цирконий в сталь в виде сплавов, состав которых приведен в табл. 103. Цирконий является довольно распространенным элементом, содержание которого в земной коре составляет 0,02 %. Свойства наиболее важных минералов циркония приведены в табл. 104. Различают два основных типа месторождений циркония коренные и россыпи. Важнейшее значение имеют современные и древние прибрежно-морские россыпи, которые обычно представляют собой комплексные руды циркония и титана, реже содержащие также торий, уран и другие ценные элементы. Наиболее крупные месторождения циркония находятся в США, Индии, Бразилии и Австралии. Запасы циркониевых руд в СССР обеспечивают потребность отечественной промышленности в цирконии и его сплавах. Циркониевый концентрат поставляется по ОСТ 48-82—74 (табл. 105). Кроме того, циркониевый концентрат может содержать торий и уран, суммарно в эквиваленте не более 0,1 % тория. Это необходимо учитывать прн работе с циркониевым концеи-  [c.316]

Стойкость no отношению к окислительным средам при высоких температурах — этому требованию суперсплавы должны удовлетворять независимо от того, имеется на них защитное покрытие или нет. Следовательно, для успешного проектирования и использования суперсплавов очень важно понять природу процессов их окисления, а также зависимость этих процессов от свойств сплавов и условий их эксплуатации. В этой главе мы дадим краткий обзор сведений об основах окислительных процессов металлов и сплавов, а затем обсудим поведение простых сплавов, образующих соединения СГ2О3 и AI2O3. Далее рассмотрим влияние обычных легирующих элементов на характер окисления этих базовых систем сплавов и заложим тем самым основу для расширенного рассмотрения и трактовки процессов окисления, которым подвергаются сложные суперсплавы.  [c.8]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]


Выбор оптимального содержания легирующих добавок в сплавах и их соотношения. Для высокопрочных алюминиевых сплавов важно избежать образования большого количества интерметаллических соединений, которые резко повышают анизотропию свойств, в особенности — сопротивления усталости. В связи с этим следует стремиться ограничивать содержание элементов, склонных к образогэнию интерметаллидов.  [c.342]

После внимательного их изучения решено было опубликовать наиболее оригинальные из них. Настоящий сборник представляет собой перевод наиболее важных работ. Заслуживает внимания уникальная по своему содержанию обзорная работа В. Робертса (Научно-исследовательская лаборатория фирмы Дженерал Электрик Ко) о сверхпроводящих материалах и их свойствах. В ней кратко описана природа сверхт проводимости, даны некоторые характеристики сверхпроводящих материалов на основе чистых элементов, соединений и сплавов различных составов (более 900) и представлена литература, включающая более 450 наименований.  [c.5]

Уважаемые читатели, эта книга вводит вас в курс физико-хи-мических основ материаловедения и методов придания различным материалам таких с1войств, которые требуются для решения инженерных задач разных направлений. Вы узнаете, почему природные и искусственно созданные материалы имеют различную электропроводность, магнитные, механические и диэлектрические свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изменить. Изучая современные методы получения и обработки материалов, вы познакомитесь со способами изменения этих свойств и, что особенно важно, научитесь прогнозировать изменение свойств материалов при изменении их состава, структуры или состояния. Кроме того, вы познакомитесь с современными методами врздействия на материалы, позволяющими управлять свойствами специально созданных смесей, химических соединений и сплавов. Одновременно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элементов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отметим, что строение атомов химических элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на понимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристики.  [c.5]

К важнейшим свойствам конфигурации элементов конструкции в зоне соединения относится характеристика доступа в зону выполнения соединения. Доступ в зону соединения необходим для размещения в ней требуемого оборудования и инструмента, форма и размеры которого определяют геометрические параметры требуемой зоны доступа. Ук-рупненно характер зон доступа описывается их принадлежностью к определенному поступательному классу подвижности с ограниченными возможными перемещениями (см. рис.1.2.14). Количественными характеристиками доступа являются размеры зоны, определяющие возможные перемещения оборудования и инструмента в зоне работ.  [c.86]

В общем случае составы ликвидуса, находящиеся в равновесии с соединениями А В состава 1 1, занимают ббльшую часть фазовой диаграммы элементов III и V групп. Вследствие этого становится возможным изменение в широких пределах состава компонентов жидкой фазы или паров, из которых выращивается кристалл, при сохранении равновесия с требуемым соединением. Преобладание твердой фазы соединения А "В и точная стехиометрия этих соединений являются важными факторами, определяющими потенциальную применимость соединений А" В . Для бинарных соединений и их твердых растворов существует широкий диапазон условий, при которых твердая фаза остается стабильной, а свойства кристаллов, существенные  [c.88]

Автрру удалось создать комплекс экспериментальных методов, разработать методику измерения и проверить эффективность этих методоэ путем осуществления широкой программы исследований. Не случайно поэтому в книге отведено значительное место рассмотрению этих важных для практики экспериментов вопросов. Вполне закономерно и то, что объектом исследования выбраны углеводороды различных гомологических рядов. Это вызвано прежде всего тем обстоятельством, что углеводороды — наиболее простые органические соединения, обладающие регулярной структурой, в состав которых входят только атомы углерода и водорода. Все другие соединения углерода, получаемые путем замены, водорода другими элементами, являются производными углеводородов. Вследствие этого именно на примере углеводородов легче всего проанализировать связь между химическим строением веществ и их теплофизическими свойствами. Закономер-.ности, установленные для углеводородов, могут сыграть серьезную роль и для других классов органических соединений.  [c.9]

Если атомы компонентов соединения идентичны (элементарные вещества), то С2 = О и связь — чистая ковалентная . В этом случае обменное электронное облако полностью симметрично относительно центра между атомами, а взаимодействующие атомы нейтральны. Если атомы компонентов соединения различны, но С2 < . С , то связь будет преимущественно ковалентной, а атомы компонентов соединения заряжены антиионно и электронная плотность смещена в сторону компонента А. С ростом ионной составляющей связи С2 антиионный заряд будет уменьшаться благодаря смещению электронного облака в сторону более электроотрицательного атома компонента В. Таким образом, при смешанной кова-лентно-ионной связи электронное облако является подвижным и асимметричным. Это свойство полупроводниковых соединений составляет их важнейшую особенность. При сохранении кристаллической структуры с Zk = 4 подвижное электронное облако с увеличением разности электроотрицательностей компонентов соединения может смещаться к более электроотрицательному элементу, в результате чего могут не только полностью исчезать антиионные заряды, но и создаваться эффективные заряды, соответствующие ионным, и тем не менее соединение будет оставаться полупроводником.  [c.63]

Ионнообменные методы нашли широкое применение в процессах извлечения таллия из полупродуктов, из технологических сточных вод, а также при получении наиболее важных химических соединений элемента. Исследователи установили, что в силу высокого ионообменного сродства ионов Т1+ целый ряд катионитов очень сильно проявляет свои селективные свойства к таллию. Особенно высоким избирательным действием по отношению к одновалентному таллию обладают катиониты, содержащие группы —ОН и —СООН. К числу их относится распространенный и дешевый катионит КУ-1- Избирательность катионитов дает возможность применять их для извлечения таллия из производственных растворов сложного химического состава.  [c.125]

Исследования структуры и свойств мартенситно-стареющих сталей (гл. 6) проводили с целью разработки оптимальных режимов термообработки композитных конструкций, обеспечивающих повышение прочности изделий. Это имеет важное практическое значение при создании конструкций, работающих в агрессивных средах, при высоких давлениях и теплообмене. Исследования характеристик трещино-стойкости волокнистого бороалюминиевого композита (гл. 8) были предопределены необходимостью оценки несущей способности элементов ферменных конструкций космических аппаратов с учетом влияния технологических и эксплуатационных дефектов. Интенсивное развитие нанотехнологий, использующих новый класс материалов — ультрадисперсные порошки химических соединений, привело к резкому увеличению числа работ по их практическому применению для повышения качества металлоизделий. Результаты 20-летних исследований в этом направлении представлены в гл. 9. Широкие перспективы использования керамических материалов, в частности конструкционной керамики на основе оксида алюминия, а также проведенные исследования обозначили ряд проблем при изготовлении изделий — недостаточная эксплуатационная надежность, хрупкость, сложность формирования бездефектной структуры. Отсюда возникли задачи исследования трещиностойкости керамики в связи с влиянием структуры, свойств и технологии ее получения (гл. 10).  [c.9]


Основой химического элемента, в том числе и металлов, является атом, состоящий из электрически положительного заряженного ядра и отрицательно заряженных электронов. Способность атомов соединяться 1руг с другом, образовывая связи различной прочности, объясняется разницей в электронном строении элементов. Свойства атома, а также связь между собой атомов одних и тех же элементов а атомов различных элементов зависят от общего числа электронов в атоме, расположения их по электронным уровням. Соединение отдельных атомов между собой и образование атомных комплексов обусловливает создание молекул химических соединений, образование атомных агрегатов металлов и других веществ. Эта способность атомов одного и того же или различных веществ образовывать неразъемное соединение является важнейшим фактором при сварке металлов. Основой образования неразъемных соединений является взаимодействие электронов, а движущей силой этого взаимодействия — стремление атомов к образованию завершенных электронных оболочек и достижению наиболее устойчивого распределения электронов. Возможность отдачи электронов одними атомами и присоединения их другими создает положительно и отрицательно заряженные ионы, которые, притягиваясь друг к другу, обусловливают наличие прочной атомной связи. Оставшиеся у ионов заполненные или незаполненные оболочки, взаимодействуя, определяют строгую закономерность расположения атомов-ионов в пространственной кристаллической решетке. Характер этого расположения атомов определяет вид пространственной кристаллической решетки. Для соединения двух металлов имеет значение соответствие их кристаллического строения и размеров атомов. Лучшие условия для совмещения атомов и установления общности кристаллического строения атомов, т. е. для сварки, будут при одинаковых кристаллических решетках, однотипных решетках с близкими параметрами и атомами с близкими размерами. В реальных условиях четкая закономерность нарушается наличием  [c.4]

X р о м в инструментальных сталях является основным легирующим элементом. В соединении с углеродом он образует мелкие карбиды, которые равномерно распределяются в стали, повышают режущие свойства инструмента. Хром увеличивает прочность и нрока-ливаемость стали, что особенно важно при изготовлении крупных инструментов. Хром повышает твердость и износоустойчивость инструментов, а в сочетании с марганцем уменьшает их коробление при закалке.  [c.13]


Смотреть страницы где упоминается термин Свойства элементов и их важнейших соединений : [c.281]    [c.555]    [c.7]    [c.21]    [c.48]    [c.230]    [c.20]    [c.48]    [c.213]    [c.6]    [c.230]    [c.133]    [c.190]   
Смотреть главы в:

Справочник машиностроителя Том 2  -> Свойства элементов и их важнейших соединений



ПОИСК



Соединения Свойства

Элементы Свойства

Элементы Соединения важнейшие



© 2025 Mash-xxl.info Реклама на сайте