Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронное строение элементов

Пределы растворимости могут быть достаточно широкими в зависимости от идентичности электронного строения элементов, образующих химическое соединение — основу данного твердого раствора.  [c.32]

Глава 2. Периодическая таблица Менделеева. Электронное строение элементов, типы связей и свойства веществ  [c.16]

Межатомная связь, являющаяся основой кристаллического строения элементов, зависит от сил взаимосвязи атомов в результате взаимодействия их электронов. При взаимодействии атомы стремятся образовать завершенную электронную оболочку.  [c.5]


В зависимости от электронного строения (положения элементов Б периодической системе Д. И. Менделеева) легирующие элементы с Ре образуют простые и сложные карбиды.  [c.162]

Разработанные в 1950 г. термодинамические направления О.А. Есиным и П.В. Гельдом, возникающие в жидких расплавах, характеризуют действием ионной теории металлов и расплавов. Их взаимосвязь определяется тепловой энергией АН и состоянием валентных электронов. Высшая валентность у элементов IV - VI периодов нарастают с 4 для хрома до 6 для вольфрама. Электронное строение и кристаллические структуры тугоплавких металлов приведены в табл. 106. Максимальные значения термодинамических показателей (Г,ц,, ДЯ, S, d) имеют тугоплавкие металлы VI группы (Сг, Мо, W).  [c.414]

Спросите металловеда, что составляет основу жаропрочных сплавов Он ответит в первую очередь никель и кобальт. Наибольшее распространение получили никельхромовые сплавы, легированные различными элементами. Атомы легирующих элементов резко отличаются от атомов основы сплава электронным строением и размерами.  [c.28]

Большое внимание уделяется созданию модели электронного строения твердого тела, позволяющей объяснить многие вопросы явления полиморфизма и массопереноса, влияние легирующих элементов на свойства и структуру сплавов, поведение твердых тел под нагрузкой  [c.69]

Основными факторами, определяющими характер взаимодействия твердого и жидкого металлов при образовании спаев, являются электронное строение их атомов, соотношение атомных радиусов, положение элементов в ряду электроотрицательности, валентность и потенциалы ионизации атомов.  [c.7]

Диаграмма состояния Dy-Pm экспериментально не построена. Dy и Pm достаточно близко расположены в Периодической системе в ряду лантаноидов и имеют идентичное электронное строение с тремя коллективизированными валентными электронами 5(1 bs , сходные кристаллические плотные гексагональные структуры и одинаковые кубические структуры высоко- и низкотемпературных модификаций этих элементов с близкими значениями параметров решеток и атомными радиусами, отличающимися всего на 2,1 %. Согласно работам [1, М] можно предположить образование непрерывных рядов твердых растворов, почти идеальных при высоких температурах.  [c.389]

Диаграмма состояния Ег—Рг экспериментально не построена. Рг и Ег имеют идентичное электронное строение с тремя коллективизированными валентными электронами 5d 6s , близкие по симметрии плотные гексагональные структуры и мало отличающиеся (всего на 4,0 %) атомные радиусы [1]. В табл. 169 приведены кристаллические данные элементов системы Рг—Ег.  [c.432]


Диаграмма состояния Gd—Lu экспериментально не построена [1, М]. Gd и Lu имеют в металлическом состоянии идентичное электронное строение с тремя валентными электронами 5d 6s , одинаковую кристаллическую ГПУ структуру типа Mg с близкими параметрами решетки [1] и атомными радиусами, отличающимися на 3,8 %. Кристаллические характеристики элементов системы Gd—Lu представлены в табл. 295.  [c.695]

Диаграмма состояния Sm-Tb экспериментально не построена [1, М]. Однако Sm и ТЬ близко расположены в периодической системе элементов, имеют идентичное электронное строение в металлическом  [c.312]

Экспериментальные данные о диаграмме состояния Tb-Tm отсутствуют. Тербий и тулий, близко расположенные в периодической системе, имеют идентичное электронное строение с тремя валентными электронами 5 6 и одинаковую плотную гексагональную структуру типа Mg с близкими постоянными решетки и атомными радиусами, отличающимися всего на 2,1 %. Можно полагать, что эти элементы образуют между собой непрерывные ряды твердых растворов с ГПУ структурой (рис. 634). Вследствие близости строения растворы должны быть близки к идеальным. Поэтому линии ликвидуса и солидуса практически сливаются в одну общую прямую с очень узкой двухфазной областью между ними. Диаграмма состояния Tb-Tm относится к перитектическому типу. Тулий в отличие от большинства лантанидов не имеет полиморфного превращения при высоких температурах вблизи температуры плавления [1, М], но испытывает аналогичное изменение ближнего порядка в жидком состоянии при 1655 С [2]. Вследствие идеальности растворов линии ликвидуса и сольвуса также сливаются в одну общую прямую. Перитектическая точка отвечает 1430 С и 37 % (ат.) Тт. Сплавы, содержащие более 37 % (ат.) Тт плавятся, сохраняя ближний порядок, соответствующий их структуре перед плавлением. При нагреве до температур, отмеченных штриховой линией на рис. 496, расплавы испытывают превращение ближнего порядка Ж0щ - Жр у.  [c.367]

К первой группе факторов относят физикохимические свойства паяемого металла и припоя, определяющие характер их взаимодействия, воздействие флюсующих сред на припой и паяемый металл, условия и характер кристаллизации при пайке. Характер взаимодействия твердого и жидкого металлов зависит от электронного строения их атомов, соотношения атомных радиусов, положения элементов в ряду электроотрицательности, валентности и потенциалов ионизации атомов.  [c.226]

Связь кристаллической С1 )уктуры металлов и неметаллических элементов с электронным строением. ГЦК структуру типа меди, характерную для многих металлов, имеют прежде всего инертные газы в твердом состоянии. Атомы Ne, Аг, Кг, Хе, Rn имеют внешнюю заполненную 5 р -оболочку с сильно связанными р-электронами, имеющими малые орбитальные радиусы. Слабые дисперсионные силы, действующие между нейтральными атомами инертных газов, недостаточны для возбуждения и спинового расщепления спаренных  [c.13]

Группа Элемент Электронное строение  [c.82]

G точки зрения электронного строения и атомно-кристаллической структуры наиболее перспективными соединениями для дисперсионного упрочнения тугоплавких металлов должны быть такие, которые при диссоциации в жидком и твердом металле образуют ионы, идентичные ионам металла, с которым они взаимодействуют. Тугоплавкие карбиды, нитриды, окислы, бориды (например, Zr , HfN, V , ZrB и другие) построены из р -ионов, перекрытие орбита-лей которых приводит к сильным коротким сг-связям, играющим важную роль в образовании ОЦК структур металлов IV—VI групп. Важнейшим условием является тугоплавкость и термодинамическая устойчивость таких соединений, повышающаяся при возрастании разности электроотрицательностей неметаллического элемента (В, С, N, О) и переходного металла.  [c.114]

Таким образом, сохранение электронного строения не только остовами растворенных атомов, но, в известной степени, и их коллективизированными электронами, означающее отсутствие вполне равномерного распределения этих коллективизированных электронов в решетке раствора и определенную локализацию их вокруг своих атомов, представляет одну из причин, определяющих распад твердых растворов и выделение из них избыточных фаз при изменении внешних условий — температуры, давления, концентрации легирующих элементов и других факторов.  [c.142]


Расчет электронной структуры границ зерен а-железа с адсорбированными фосфором и бром [192]/ учитывающий такую структуру кластеров на границах, показал, что фосфор образует прочные связи в результате перекрытия орбиталей Fe (3d) и Р(3/г) с ближайшими атомами Ре в кластере РерР, а связи между этими кластерами на границах зерен и окружающими атомами Ре ослабляются что и приводит к охрупчиванию границ зерен. Авторы подчеркивают, что характер химических связей на границах зерен зависит не только от электронного строения элемента-примеси, но и от положения примеси на границах зерен, изменений структуры границ зерен и локальных смещений атомов, вызванных межкристаллитной внутренней адсорбцией. Таким образом, охрупчивающая роль фосфора в явлении отпускной хрупкос-ги сплавов  [c.163]

Основой химического элемента, в том числе и металлов, является атом, состоящий из электрически положительного заряженного ядра и отрицательно заряженных электронов. Способность атомов соединяться 1руг с другом, образовывая связи различной прочности, объясняется разницей в электронном строении элементов. Свойства атома, а также связь между собой атомов одних и тех же элементов а атомов различных элементов зависят от общего числа электронов в атоме, расположения их по электронным уровням. Соединение отдельных атомов между собой и образование атомных комплексов обусловливает создание молекул химических соединений, образование атомных агрегатов металлов и других веществ. Эта способность атомов одного и того же или различных веществ образовывать неразъемное соединение является важнейшим фактором при сварке металлов. Основой образования неразъемных соединений является взаимодействие электронов, а движущей силой этого взаимодействия — стремление атомов к образованию завершенных электронных оболочек и достижению наиболее устойчивого распределения электронов. Возможность отдачи электронов одними атомами и присоединения их другими создает положительно и отрицательно заряженные ионы, которые, притягиваясь друг к другу, обусловливают наличие прочной атомной связи. Оставшиеся у ионов заполненные или незаполненные оболочки, взаимодействуя, определяют строгую закономерность расположения атомов-ионов в пространственной кристаллической решетке. Характер этого расположения атомов определяет вид пространственной кристаллической решетки. Для соединения двух металлов имеет значение соответствие их кристаллического строения и размеров атомов. Лучшие условия для совмещения атомов и установления общности кристаллического строения атомов, т. е. для сварки, будут при одинаковых кристаллических решетках, однотипных решетках с близкими параметрами и атомами с близкими размерами. В реальных условиях четкая закономерность нарушается наличием  [c.4]

Установление зависимости между электронным строением элементов и их влиянием на состояние связей между железом и углеродом имеет существенное значение при регулировании процессов структурообразования чугуна, но этого недостаточно. Кроме того, нельзя формально пользоваться этихш зависи.мостями, что видно, например, из следующего. Водород и бор по своему электронному строению должны ослаблять связи железа с углеродом, а в действительности они их усиливают. Как известно, указанные элементы и по многим другим свойствам отличаются от той группы, в которой они находятся.  [c.36]

Близость электронного строения (валентные электроны, параметры решетки и атомный радиус) основных элементов (Ni, Сг), определяющая идентичность ОЦК структур, способствует образованию широких и непрерывных областей ОЦК твердых растворов между тугоплавкими металлами 5-го периода - Nb, Мо и 6-го периода Та, W и создают широкие возможности твердорастворенного упрочнения жаропрочного сплава путем взаимного легирования. Введение в сплав с ОЦК структурой небольшого количества рения, равного 3,5 - 4,5% (по массе) с гексагональной структурой, при растворении в ОЦК металлах - Nb, Та, Сг, Мо, W передаст в коллективизированное состояние все валентные электроны, сильно упрочняет межатомные связи и повышает жаропрочность сплава. Таким о )разом, сплав приобретает рениевый эффект , т.е. повышаются пластичность и жаропрочность при высоких температурах.  [c.430]

Рентгеновские спектры бывают двух видов сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и гюлностью характеризуется им. Каждый элемент обладает своим, харак1ерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называются также характеристическими.  [c.293]

Атомный номер технеция 43, атомная масса 98,913, атомный радиус 0,1358 нм. Технеций — искусственно полученный радиоактивный элемент. Все изотопы нестабильны наиболее долгоживущий — 99-й имеет период полураспада 212-10 лет. Электронное строение [Kг]4i/ 5s . Электроотрицательность 1,4. Потенциал ионизации 7,276 эВ. Кристаллическая решетка — п. г. с параметрами а=0,2735 нм, с = 0,4391, с/а=1,60. Плотность 11,387 т/м . 1пл = 2140 С, 1кпп = 4700 "С.  [c.141]

Электронное строение. Заряд ядра и число электронов, нейтрализующих его, играют основную роль в организации структуры кристаллической решетки и большинства свойств металла. Свойства всех элементов являются периодической функцией атомной массы, т. е. числа электронов. В таблице Д. И. Менделеева наиболее типичные металлы, сравнительно легко отдающие электрон, — щелочные — находятся слева в I группе, а наиболее типичные неметаллы, энергично присоединяющие электрон для достройки электронной оболочки, — галогены — находятся справа в VII группе. Металличность элементов возрастает при перемещении влево и вниз таблицы. Вблизи правого верхнего угла находятся полуметаллы мышьяк, селен, германий, сурьма, висмут. Исходя из этого, можно полагать, что все тяжелые элементы, начиная с франция, будут обладать металлическими свойствами и хорошей пластичностью. Важно не только число электронов в атоме, по и строение их оболочек — конфигурация, определяющая кристаллическую структуру и большинство свойств металлов.  [c.193]


Обзор соединений можно закончить следующим. Соединения, образующиеся в двойных системах титана с металлами VIII группы, относятся к соединениям с металлическим типом связи. Их составы и структура принадлежат к наиболее часто встречающимся в сплавах переходных металлов. Закономерное изменение характера и структуры этих соединений при увеличении порядкового номера элементов VIII группы отображает особенности изменения электронного строения этих переходных металлов.  [c.189]

Взаимодействие металлов с металлами и неметаллами определяет их металлохнмические свойства [6] электронное строение атомов, соотношение атомных радиусов взаимодействующих металлов, положение элементов в ряду электроотрицательпости, валентности и потенциалы ионизации атомов. Эти свойства определяют, в каких случаях возникают металлические твердые растворы, образуются металлические соединения, с какими элементами металлы дают только механические смеси или же совсем не взаимодействуют.  [c.9]

В плане развития работ в этом направлении на кафедре были рассмотрены вопросы электронной природы твердости металлов, неметаллов и сплавов (Л. И. Баженова, А А. Иванько) и обобщены в монографическом справочнике электронного строения сложных карбидо-гидридных фаз (Л. Н. Баженова, канд. техн. наук В. В. Морозов) — эта работа привела к выводам о двойственном состоянии водорода в гидридах и карбидо-гидридах как в форме протонов, так и отрицательных гидрид-ионов, позволила объяснить причины более сильной связи водорода в карбидо-гидридах по сравнению с гидридами, представить схему химических связей в этих соединениях, а также существенно развить представление о структуре фаз внедрения вообще. Развитие представлений конфигурационной модели применительно к ферритам с использованием редкоземельных элементов было выполнено  [c.78]

Металлич. сплавы представляют собой либо твёрдые растворы, когда атомы металла-растворителя и растворённого элемента образуют общую кристаллич, решётку, совпадающую с решёткой растворителя, либо т. н. интерметаллич. соединения, кристаллич. структура к-рых отличается от структуры чистых компонентов. Атомная структура сплавов определяется в основном соотношением размеров атомов компонентов и их электронным строением. Общим термодинаиич. условием образования сплавов является минимум свободной энергии этому условию могут соответствовать как монофазные, так н гетерофазные структуры. Обобщением данных о состоянии системы в зависимости от её состава, Т (иногда и р) служат фазовые диаграммы диаграммы состояния). Фазовые диаграммы металлич, систем могут быть рассчитаны лишь в простейших случаях для экспериментального их построения используют разл. методы физ.-хим. анализа.  [c.112]

Электронное строение и типы связей элементов периодической системы - ключ к пониманию структуры и свойств простых и сложных веществ, образованных этими элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана группа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа атомов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической структуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симметрия орбиталей атомов данного конкретного элемента полностью определяют число, длин , ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в гфостранстве, т е. кристал-лическ то структуру, основные физико-химические свойства элемента.  [c.30]

Диаграмма состояния Pm-Pr экспериментально не построена. Однако Pm и Рг в Периодической системе элементов расположены рядом. В металлическом состоянии металлы имеют идентичное электронное строение с тремя внешними коллективизированными электронами 5йРбД одинаковые кристаллические структуры с близкими постоянными решетки, атомные радиусы, отличающиеся всего лишь на 0,9 %.  [c.5]

Столь различное влияние легирующих элементов на поли лорфизм -Железа и иа вид диаграмм железо — легирующим элемент обус ювлено влиянием различных факторов изоморфностью легирующего элемента одной из модификации железа (у или а) различием атомных оадиусов железа и легирующего элемента характером и энергией межатомного взаимодействия электронным строением атомов железа и легирующего элемента  [c.10]

Значения предельной растворимости легирующих элементов в железе зависят от взаимного расположения этих элементов в периодической системе Наибольшую растворимость в железе имеют элементы, находящиеся в том же пе риоде, что и железо, а также расположенные в наиболее бтизких к нему V—VIII группах Как известно, по мере удаления от железа увеличивается различие в строении внешних d в S электронных оболочек d переходных металлов, изменяется металлическая валентность и электрохимические свойства элементов, т е обычно говорят, что изменяется сродство кэлектрону В свою очередь электронное строение определяет и атомные размеры элементов Поэтому как размерный фактор, так и сродство к электрону являются связанными между собой параметрами, определяющими растворимость элементов в железе  [c.37]

На рис 29 в последовательности, отвечающей положе нию металлов в периодической системе элементов, приведены обобщенные данные о кристаллической структуре и электронном строении d и s оболочек переходных металлов, используемых для легирования сталей, а также сведения о кристаллической структуре и стехиометриЧгеской фор-  [c.56]

Марганец расположен в Периодической системе элементов Д. И. Менделеева в том же большом периоде, где находятся ферромагнитные элементы железо, кобальт и никель, т. е. входят в число переходных металлов 4-го периода VII группы. Электронное строение оболочек изолированных атомов ЗФ 4s . Хотя марганец сам по себе не ферромагнитен, но его соединения и некоторые сплавы ферромагнитны. Причина ферромагнетизма в недостроенности внутренних электронных Зс1-оболочек (Зс1-металлы). Сложность структуры внешних электронных оболочек, близость энергетических уровней вызывают неустойчивость в распределении электронов между подгруппами и обусловливает сложность электронных спектров, полиморфизм и магнетизм переходных элементов [2].  [c.71]

В технике широко используются жаропрочные сплавы на основе железа, кобальта и никеля. К ним относятся аустенитные хромоникелевые, хромомарганцевые стали, дополнительно легированные алюминием, титаном, кремнием, молибденом и другими элементами. Высокой жаропрочностью и стойкостью к газовой высокотемпературной коррозии отличаются никелевые сплавы, содержащие 30—40% хрома, алюминий, титан, молибден, ванадий и другие легирующие элементы. Эти сплавы типа нихромови нимоников имеют высокую жаропрочность до 700—900° С. Плотная кубическая структура у-железа, умарганца, никеля и р-кобальта, обусловленная близостью электронного строения их атомов, имеющих заполненнук> нерасщепленную d -остовную оболочку, идентичную р -оболочке,. близость атомных радиусов и концентраций коллективизированных электронов (2 эл/атом) приводит к широким возможностям легиро-  [c.39]


У следующего элемента 3Li появляется третий электрон, которому нет места в полностью застроенной первой электронной оболочке (принцип Паули). Поэтому с лития начинается заполнение второй оболочки с главным квантовым числом л = 2, т. е. начинается второй период в таблице Менделеева. Во второй оболочке имеются 4(s—р) квантовых ячеек, содержащих восемь вакантных мест для валентных электронов. В атоме водорода энергии электронов в s- и р-ячейках одной электронной группы одинаковы. В атоме лития имеется двухэлектронный остов, экранирующий заряд ядра до.7 = 1. Вследствие просачивания части электронной плотности 25-состояния внутрь остова ( ныряющая боровская орбита) энергия связи 25-электрона с ядром оказывается меньше энергии 2р-электрр-йа (2s<2p), и электронное строение атома лития будет ls 2s . У 4Ве заполняется 2х -ячейка, а у следующего элемента 5В впервые появляются р-электроны. Далее заполнение р-ячеек, так же как и ячеек следующих d и f электронных подгрупп, идет в соответствии с эмпирическим правилом Хунда, согласно которому конфигурация электронов должна обладать максимальным суммарным спином 5. Это означает преимуществен-ность параллельной ориентации спинов. Возможность параллельной ориентации спинов исчерпывается у седьмого элемента азота, имеющего замкнутую сферически симметричную р-под-группу, что проявляется в некотором повышении первого потенциала ионизации атома азота по сравнению с атомами соседних элементов. Далее с увеличением порядкового номера элемента электроны начинают размещаться в ячейках попарно с антипараллельными спинами. Этот процесс завершается у десятого элемента неона, атомы которого имеют замкнутую валентную оболочку с полностью компенсированными механическими и магнитными моментами и сферически симметричным распределением электронной плотности. Последнее является следствием свойств суммы квадратов сферических функций для заполненных подгрупп. Атомы неона, как и гелия, имеют высокий потенциал ионизации и химически инертны.  [c.13]


Смотреть страницы где упоминается термин Электронное строение элементов : [c.92]    [c.328]    [c.12]    [c.180]    [c.248]    [c.162]    [c.31]    [c.40]    [c.6]    [c.155]    [c.7]    [c.12]    [c.15]   
Физическое металловедение Вып I (1967) -- [ c.14 , c.15 ]



ПОИСК



28—31 — Строение

Электронное строение



© 2025 Mash-xxl.info Реклама на сайте