Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб балок с тонкостенным профилем

При поперечном изгибе балок тонкостенного профиля касательные напряжения иногда понижают прочность. Однако и в этих случаях при определении размеров поперечного сечения балки касательные напряжения вначале не принимают во внимание, а затем производят поверочный расчет с учетом касательных напряжений.  [c.209]

Прежде всего, как и при рассмотрении двутавра, условимся считать, что по толщине тонкостенного профиля нормальные напряжения при изгибе балки распределены равномерно допускаемая при этом погрешность невелика. На рис. 12.29 показана балка тонкостенного профиля и эпюра нормальных напряжений, возникающих в поперечном ее сечении вследствие малости отношения  [c.138]


При рассмотрении устойчивости плоской формы изгиба открытых тонкостенных профилей, в частности двутаврового профиля, существенно, что их кручение при опрокидывании связано с искажением (депланацией) поперечных сечений. Величина крутящего момента и искажение сечений изменяются по длине балки  [c.344]

Открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка защемлена, то вследствие отсутствия депланации поперечного сечения в защемлении в балке возникнут также значительные нормальные напряжения. Поэтому нельзя допускать появления кручения при изгибе балок тонкостенных профилей.  [c.142]

При рассмотрении устойчивости плоской формы изгиба открытых тонкостенных профилей, в частности двутаврового профиля, существенно, что их кручение при опрокидывании связано с искажением (депланацией) поперечных сечений. Величина крутящего момента и искажение сечений изменяются по длине балки, и, следовательно, здесь имеет место так называемое стесненное кручение.  [c.329]

В предыдущем параграфе были рассмотрены касательные напряжения при косом изгибе. Как и в случае плоского изгиба, эти напряжения невелики в балках сплошного профиля (прямоугольник, круг и т. д.) и не оказывают заметного влияния на прочность и перемещения балки. Напротив,, в балках тонкостенного профиля (прокатные и штампованные профили) касательные напряжения при косом изгибе могут достигать значительной величины. При этом они не только существенно влияют на прочность и величины  [c.276]

В проектной практике нашел применение упрощенный метод расчета пространственных блоков КЖС по аналогии с расчетом на изгиб балки тонкостенного П-образного профиля и переменной высоты с дополнительной проверкой прочности отдельных деталей конструкции. Имеется в виду  [c.215]

Аа. Следовательно, искривления поперечных сечений не сказываются на законе распределения нормальных напряжений и их значений. В балке прямоугольного и круглого сечений максимальные касательные напряжения возникают в тех точках, где нормальные напряжения равны нулю (на нейтральной оси), и, наоборот, в крайних точках сечения, где нормальные напряжения максимальны, касательные напряжения равны нулю. Поэтому за опасные можно принять точки, наиболее удаленные от нейтральной оси, что подтверждается практикой эксплуатации балок, работающих на изгиб. Однако в случае тонкостенных профилей (например, двутавра) необходимо проверить прочность балки и в точках, где полка сочленяется со стенкой, поскольку здесь возникают значительные как нормальные, так и касательные напряжения.  [c.221]


Как известно, открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка заделана так, что депланация сечения в заделке становится невозможной, то будет иметь место так называемое стесненное кручение, при котором в поперечном сечении возникают не только касательные, но и значительные нормальные напряжения. Поэтому желательно принимать меры, устраняющие кручение в балках прокатного профиля. Обычно по этой причине ставят симметричное сечение из двух швеллеров. Если же профиль один, а нагрузка значительна, то ее нужно выносить из главной плоскости так, чтобы она проходила через точку С (на рис. 313, б такое положение нагрузки показано пунктиром на рис. 313, г дан один из возможных вариантов конструктивного оформления вынесения нагрузки). В этом случае участок балки длиной х полностью уравновешивается силами Р, Q x) = P и моментом М х) = Рх кручения не будет. Поэтому точка С называется центром изгиба (иногда — центром жесткости). Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 313, б).  [c.340]

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]

Построить эпюру касательных напряжений по сечению и вычислить с , и для балки тонкостенного уголкового профиля пролетом /=40 см, изгибаемой силой Р=2Ъ кГ, приложенной в центре изгиба сечения, в двух случаях 1) сила Ру=Р направлена вертикально и 2) сила направлена горизонтально. Размеры сечения 6=40 мм, t=2 мм. Указать положение центра изгиба.  [c.116]

Длительная практика эксплуатации изогнутых балок показывает, что наиболее опасной, определяющей работоспособность конструкции, является точка наиболее удаленная от нейтральной линии (точки 1 и 4). Поэтому подбор сечения можно вести так же, как и при чистом изгибе, по наибольшим нормальным напряжениям. Однако в случае тонкостенных профилей (например, двутавр, швеллер) необходимо проверить прочность балки и в точках К (рис. 138), где полка сочленяется со стенкой, поскольку здесь возникают значительные нормальные и касательные напряжения.  [c.166]

Целью работы является демонстрация наличия крутильного эффекта, возникающего при поперечном изгибе тонкостенной балки открытого профиля, и экспериментальная проверка расчетной формулы для определения положения центра изгиба .  [c.183]

Рис. 12.30. К выводу формулы для касательного напряжения прн поперечном изгибе тонкостенной балки открытого профиля а) элемент балки б) часть элемента балки и действующие на нее силы в) к обоснованию выбора нормального сечения -- отделение части элемента сечением с максимальными касательными напряжениями г) направление полного касательного напряжения, определяемого формулой (12.48), и распределение Рис. 12.30. К <a href="/info/519114">выводу формулы</a> для <a href="/info/5965">касательного напряжения</a> прн <a href="/info/4866">поперечном изгибе</a> <a href="/info/419906">тонкостенной балки</a> <a href="/info/7033">открытого профиля</a> а) элемент балки б) часть элемента балки и действующие на нее силы в) к обоснованию выбора <a href="/info/4740">нормального сечения</a> -- отделение части <a href="/info/307806">элемента сечением</a> с <a href="/info/31320">максимальными касательными напряжениями</a> г) направление полного <a href="/info/5965">касательного напряжения</a>, определяемого формулой (12.48), и распределение

Пример 12.7. Построить эпюру распределения касательных напряжений по поперечному сечению балки тонкостенного открытого профиля, изображенного на рис. 12.37, д, при поперечном изгибе в плоскости 05/2. Размеры сечения л, 6 и поперечная сила Qy заданы.  [c.146]

Пример 12.8. Построить эпюры распределения касательных напряжений по поперечному сечению балки тонкостенного открытого профиля, изображенного на рис. 12.38, а, при поперечном изгибе в плоскости Оуг Охг). Размеры сечения, указанные на рис. 12.38, а, и поперечная сила заданы.  [c.147]

Практическое значение понятия центра изгиба. В балках открытого тонкостенного профиля наблюдается некоторое явление, сущность которого объясняется ниже. Как будет показано, с этим явлением связано понятие центра изгиба.  [c.168]

Следовательно, чтобы избежать кручения балок тонкостенных профилей необходимо использовать симметричные сечения. Если же тонкостенное сечение несимметричное, то чтобы не было кручения необходимо, чтобы все внешние нагрузки пересекали ось центров изгиба или ось жесткости балки.  [c.142]

В предыдущем разделе были получены формулы и описаны приемы для нахождения касательных напряжений в тонкостенных балках незамкнутого профиля. Воспользуемся теперь этими сведениями для определения положения центров сдвига для различных конкретных форм сечений. Сначала рассмотрим швеллерную балку (рис. 8.12, а), которая изгибается относительно оси г и на которую действует вертикальная поперечная сила Qy, параллельная оси у. Распределение касательных напряжений в швеллере показано на рис. 8.12, Ь. Для того чтобы найти напряжение %i в месте соединения полки со стенкой, используем формулу (8.18) при этом будет равно статическому моменту площади полки относительно оси z  [c.326]

Первым уравнением (г) определяются продольные деформации оболочки при осевом растяжении (сжатии). Второе и третье уравнения характеризуют деформированное состояние оболочки при изгибе ее как тонкостенной балки (с сохранением формы профиля) в горизонтальной плоскости. При действии на оболочку только поперечных нагрузок q z, s) они приводятся к одному дифференциальному уравнению  [c.252]

Особенностью двутавра, как тонкостенного открытого профиля, является то, что при изгибе в плоскости Оуг компонент в стенке почти точно совпадает с полным напряжением в полках же компонентом можно пренебречь вообще в них наиболее существенным компонентом, также почти точно совпадающим с полным напряжением является Иными словами, в тонкостенном открытом профиле, в частности таком как двутавр, с большой степенью точности можно считать, что полное касательное напряжение направлено параллельно оси контура. В стенке это а в полках Для отыскания в полках двутавра выполняется операция, аналогичная той, которая была использована при выводе формулы (12.40). С этой целью от элемента балки, заключенного между сечениями 1—/ и 2—2 с координатами 2 и 2 + 2 (рис. 12.28, а) отрежем часть полки и рассмотрим равновесие ее, имея в виду, что в сечении 1—1 балки действует изгибающий момент М , а в сечении 2—2 — М, + Уравнение равновесия отсеченной части полки имеет вид  [c.136]

Теоретическое исследование изгиба и кручения тонкостенных стержней открытого профиля впервые выполнил С. П. Тимошенко (Об устойчивости плоской формы изгиба двутавровой балки. Известия СПб Политехнического института, т. IV—V, 1905—1906), при этом крутильную жесткость стержня он определил экспериментально. С. П. Тимошенко обнаружил возникновение нормальных напряжений при стесненном кручении тонкостенного стержня открытого профиля.  [c.385]

На рис. 48, а показана простая тонкостенная конструкция открытого профиля, находящаяся под действием кососимметричной нагрузки Р, что характерно для автомобильных конструкций. Жесткость и прочность этой конструкции в основном определяют изгибом боковых панелей, которые находятся в условиях плоского напряженного состояния (рис. 48,6). На рис. 49, а приведена консольная балка толщиной t, к свободному концу А которой приложена сила Р. Нагружение балки в этом случае аналогично нагружению боковой панели рассматриваемой конструкции. Балка моделировалась элементами четырех типов [11], На рис. 50, а представлены результаты численного эксперимента по определению прогиба свободного конца балки уа в зависимости от числа степеней свободы при идеализации балки треугольными элементами с постоянной деформацией (кривая 1) и линейной деформацией (кривая 2). Треугольный элемент с постоянными деформациями, что равнозначно постоянству напряжений, построен на описании поля перемещений полным линейным полиномом. Этот элемент часто называют С5Г-элементом [11], или симплекс-элементом [20]. Представление поля перемещений элемента полным квадратичным полиномом приводит к линейным распределениям деформаций или напряжений. Такой элемент обычно называют 57 -элемен-том [11], или комплекс-элементом [20]. Как видно из рис. 50, а, характеристики сходимости для треугольных элементов не очень  [c.76]

При изгибе тонкостенных стержней с открытым профилем принято считать, что касательные напряжения распределяются равномерно по толщине сечения б и направлены по касательным к средней линии. Если главные центральные оси сечения не являются осями симметрии, то при изгибе в плоскости главной оси балки 6 его поперечных сечениях возникают дополнительные касательные напряжения и балка наряду с изгибом закручивается. Чтобы исключить закручивание балки при изгибе, поперечная сила должна проходить не через центр тяжести, а через центр изгиба.  [c.229]


Рис. 190. Опытное определение положения центра жесткости балки при изгибе / — испытываемая тонкостенная балка корыт-ного профиля, 2 — опорный траверс, 3 — винт машины, поднимающий траверс, 4 — верхняя упорная головка машины. Рис. 190. Опытное определение <a href="/info/12024">положения центра</a> <a href="/info/177426">жесткости балки</a> при изгибе / — испытываемая <a href="/info/419906">тонкостенная балка</a> корыт-ного профиля, 2 — опорный траверс, 3 — винт машины, поднимающий траверс, 4 — верхняя упорная головка машины.
При выводе формулы для касательного напряжения в поперечном сочении балки тонкостенного открытого профиля при поперечном изгибе поступим аналогично тому, как это делалось выше, применительно к балкам массивным или двутаврового сечения.  [c.139]

Рис. 12.29. К обоснованию допущения о равномерности распределения нормальных напряжений при изгибе балки открытого тонкостенного профиля /д, 3 , — рмаль- Рис. 12.29. К <a href="/info/642908">обоснованию допущения</a> о равномерности <a href="/info/394480">распределения нормальных напряжений</a> при <a href="/info/88924">изгибе балки</a> открытого <a href="/info/7035">тонкостенного профиля</a> /д, 3 , — рмаль-
Упомянутые авторы определяли центр изгиба как точку, через которую проходит равнодействующая касательных напряжений, при этом, конечно, кроме вертикальных касательных напряжений, учитывались и горизонтальные, возникающие в полках балки. Наиболее правильно задачу решил Майар. Эггеншвиллер же допустил ошибку. Он считал, что во всех случаях кручение тонкостенного профиля сопровождается появлением нормальных напряжений независимо от того, имеется ли и каково по величине препятствие искривлению сечения, поэтому по его вычислению напряжения получились втрое больше, чем по экспериментам Баха, что он объяснил неточностью проведения экспериментов. На самом же деле, как мы увидим ниже, качество проведения этих экспериментов было очень высокое.  [c.5]

Часто применяемые на практике балки таврового, двутаврового, зетового, коробчатого и других тонкостенных сечений могут рассматриваться как состоящие из длинных прямоугольных полос, соединенных между собой вдоль краев. Элементарная теория изгиба применительно к таким профилям может быть неточной более правильные расчеты получаются, если строить для каждой из полос решение плоской задачи теории упругости и эти решения сопрягать между собою. Таким образом, возникает естественная необходимость построения решения плоской задачи для длинного, вытянутого прямоугольника. Оговорка о том, что прямоугольник должен быть вытянут, существенна. Дело в том, что метод разделения переменных, который будет применен в этой задаче, не позволяет удовлетворить двум граничным условиям на каждой стороне. Поэтому при решении добиваются точного удовлетворения граничных условий на длинных сторонах, тогда как на коротких сторонах граничные условия выполняются лишь интегрально. Вспомним, что такая же ситуация встречается в теории кручения и изгиба. Пусть ширина балки есть 2Ь, длина I, оси координат выбраны так, что границами слун ат линии х, = 0, х, = I, Х2 = Ь.  [c.355]

В зависимости от конкретных обстоятельств, возможно принятие схем, в которых элемент конструкции наделяется свойствами более полного, но тоже только частичного восприятия силовых факторов. В результате возникают схемы, промежуточные между балкой и нитью, между оболочкой и гибкой оболочкой. Например, брус тонкостенного открытого профиля способен воспринимать относительно малые крутящие моменты. Тогда можно принять, что он может работать только на изгиб, растяжение и сжатие. Так, в частности, обычно поступают при анализе некоторых авиационных конструкций, имеющих тонкостенные подкрепления (стрингеры, шпднгоуты). Оболочке тоже может быть приписана способность работать только на растяжение, сжатие и сдвиг, но отказано в способности  [c.23]

Э. Хвалла ) исследовал поперечное выпучивание балок несимметричного профиля и дал общий вид уравнений, из которых уравнения для двутавровой балки получаются как частный случай. Автор настоящей книги изложил общую теорию изгиба, кручения и устойчивости тонкостенных элементов открытого профиля ). В. 3. Власов развил в своей книге ) иной метод подхода к теории устойчивости, указав, что для тонкостенных стержней принцип Сен-Вена на теряет силу и что, например, в элементе зетового профиля можно вызвать кручение, приложив по торцам к его полкам изгибающие моменты.  [c.495]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]

Следует учесть, что брусья тонкостенного открытого профиля (типа швеллера) плохо сопротивляются деформации кручения поэтому при использовании таких брусьев в качестве элементов конструкций, работающих на изгиб, следует принимать конструктивные меры для такой передачи нагрузки, при которой плоскость ее действия проходит через центры изгиба поперечных сечений бруса. В частности, для швеллерной балки это можно осуществить, прикладывая нагрузку к угловому коротьшу, приваренному к ее стенке (см. рис. 62.7, а).  [c.315]

Для сечений типа двутавра при изгибе поперечными силами мы также будем иметь наличие горизонтальных касательных напряжений в поясах (фиг. 248). Однако благодаря симметрии сечения эти напряжения взаимно уравновешиваются в пределах каждой полки, и центр изгиба совпадает с центром тяжести сечения. Совпадение центра изгиба с центром тяжести сечения имеет место, если сечение имеет две оси симметрии или центр антисимметрии (зетобразная форма) в этом случае скручивание при действии нагрузки в плоскости, проходящей через ось стержня, исключено. Кроме того, из формул (15.18) и (15.19) следует, что скручивание балок при нагрузке их в главной плоскости, не являющейся плоскостью симметрии, связано с наличием в сечениях поперечной силы. Впрочем, для тонкостенных стержней несимметричного профиля (см. главу XXX) скручивание балк может возникнуть и при отсутствии поперечных сил.  [c.323]


Одна из задач стеснённого кручения была изучена ещё в 1905 г. проф. С. П, Тимошенко при рассмотрении вопроса об устойчивости плоской формы изгиба двутавровой балки ). Вопросами изгибного кручения занимался ряд советских и иностранных учёных в последующий период (Губер— 1924, В. Г. Галёркин — 1927, Вагнер— 1928, П. М. Знаменский — 1934, Л. С. Лейбензон — 1935, Блейх — 1936, Каппус— 1937). Однако в общем виде задача об изгибном кручении тонкостенных стержней открытого профиля была решена профессором  [c.532]


Смотреть страницы где упоминается термин Изгиб балок с тонкостенным профилем : [c.133]    [c.262]    [c.385]    [c.206]    [c.345]    [c.169]   
Смотреть главы в:

Конструкционные пластмассы  -> Изгиб балок с тонкостенным профилем



ПОИСК



Балка тонкостенная

Изгиб балок

Профили балок

Профиль тонкостенный



© 2025 Mash-xxl.info Реклама на сайте