Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вынужденные колебания в системах с п степенями свободы

Вынужденные колебания в системах с п степенями свободы  [c.295]

В случае системы с п степенями свободы выводы о влиянии линейного сопротивления на вынужденные колебания остаются прежними.  [c.486]

Удовольствуемся этими краткими сведениями об общем случае свободных малых колебаний системы с п степенями свободы. Более детальное изложение вопроса, а также обобщения на случай вынужденных колебаний системы и влияния на ее колебания сопротивлений можно найти в специальных курсах теории колебаний, а также в третьем томе нашей книги Теоретическая механика (ГТТИ, 1934) или в книге Гант-махер Ф. Р. Лекции по аналитической механике. — 2-е изд.— М. Наука, 1966, гл. VI.  [c.595]


В линейной системе с п степенями свободы справедлив принцип суперпозиции колебаний. Поэтому задача о вынужденных колебаниях в системе под действием любой периодической силы сводится к нахождению вынужденных движений системы в результате действия гармонической силы частоты р. В общем случае сила может действовать на каждую из координат. Таким образом, внешняя сила представляется вектором причем его состав-  [c.295]

При исследовании вынужденных колебаний в неконсервативной системе с п степенями свободы необходимо решать уравнение (8.5.3).  [c.298]

Как уже говорилось в предыдущем параграфе, демпфирование становится исключительно важным в том случае, когда периодические возмущения имеют частоту, близкую к одной из частот собственных колебаний системы со многими степенями свободы. Вопрос об установившихся вынужденных колебаниях систем с двумя степенями свободы исследовался в п. 3.8 с помощью метода передаточных функций. Этот подход может быть легко распространен на системы с п степенями свободы, при этом основные соотношения [см. выражения (3.51) и (3.52) J сохраняют свою форму неизменной. Однако решение в рамках указанного подхода требует обращения матрицы порядка п X п, содержащей комплексные числа. Если собственные значения и собственные векторы системы предварительно были определены тем или иным способом, подходу с использованием передаточных функций лучше предпочесть метод нормальных форм колебаний. Зная частоту изменения возмущений и собственную частоту колебаний системы, можно непосредственным путем определить динамические перемещения по формам колебаний, чьи частоты близки к частоте возмущения. Ниже, будут рассмотрены возмущения, имеющие вид либо одной гармонической функции, либо произвольного вида периодических функций, при этом будет предполагаться, что система имеет либо пропорциональное демпфирование, либо демпфирование по формам колебаний, аналогичное тому, о котором говорилось в предыдущем параграфе.  [c.306]

Рассмотрим свободные и вынужденные крутильные колебания цилиндрического вала постоянного поперечного сечения с закрепленными на нем п дисками. Так как положение этой системы в любой момент времени определяется углами поворота каждого из дисков, т. е. п независимыми друг от друга параметрами, то эта система имеет п степеней свободы (рис. 78).  [c.188]


Если силами сопротивления можно пренебречь или если силы сопротивления удовлетворяют определенным частным условиям, то для решения системы уравнений (2.38) может быть использован метод главных координат. Рассмотрим вынужденные колебания систем с п степенями свободы без учета сил сопротивления (матрица В нулевая). Уравнение движения системы в векторной форме имеет вид  [c.50]

Н. П. Петров изучал влияние различного рода впадин на колесе и рельсе при различных скоростях. Результаты при этом представляются в ( рме числовых таблиц, что отчасти затрудняет получение общих выводов относительно влияния формы впадины и величины скорости движения на динамические напряжения. Переходя к рельсу, лежащему на сплошном упругом основании, мы приводим задачу к исследованию колебаний системы с одной степенью свободы. Возникающие в такой системе вынужденные колебания могут быть представлены в простой форме, удобной для практических приложений.  [c.336]

Если колебательная система состоит из п частей с массами гПп, упругостями Sn и сопротивлениями г,г, связанных друг с другом, т. е. имеет п степеней свободы, то ее колебания отличаются от колебаний системы с двумя степенями свободы, в основном тем, что вместо двух собственных частот и двух форм нормальных колебаний она имеет п собственных частот и п форм нормальных колебаний. При воздействии синусоидальной силы, приложенной к одной из частей системы, во всей системе возбуждаются сложные колебания, которые состоят из свободных колебаний с частотами, равными собственным частотам системы, и вынужденных колебаний с частотой внешней силы.  [c.45]

Рассмотрим (рис, 137, с) свободные и вынужденные крутильные колебания валопровода с п массами. Так как положение этой системы в любой момент времени определяется углами поворота каждой из масс, т. е. п независимыми друг от дру-, га параметрами, то эта система имеет п степеней свободы. Обозначим углы поворота масс фь фг. — фп и будем отсчитывать их от равновесного положения системы. В равновесном положении эти углы равны нулю. Жесткость на кручение каждого из участков вала  [c.231]

Вывод. Вынужденные колебания линейной системы слагаются из ко лебаний тех же частот, что и частоты внешних воздействий (хотя амплитуд и фаза вынужденных колебаний данной частоты в общем случае отличаете от амплитуда и фазы колебаний той же частоты внешней силы). Спект вынужденных колебаний в нелинейной системе содержит не только часто внепших воздействий, но и дополнительные частоты (комбинационны тоны). Этот вывод справедлив и для систем с п степенями свободы.  [c.287]

Глава 3. Вынужденные колебания. Главы 1 и 2 начинаются со свободных колебаний гармонического осциллятора и заканчиваются свободными стоячими волнами в замкнутых системах. В главах 3 и 4 мы рассматриваем вынужденные колебания, вначале для замкнутых систем (глава 3), где мы обнаруживаем резонансы , а затем для открытых систем (глава 4), где возникают бегущие волны. В п. 3.2. рассмотрены вынужденные колебания одномерного осциллятора с затуханием как в переходном, так и в установившемся режиме. Затем мы переходим к системам с двумя или большим числом степеней свободы и обнаруживаем у таких систем резонансы, соответствующие каждой моде свободных колебаний. Мы рассматриваем также действие вынуждающей силы на замкнутые системы при частотах, меньших частоты низшей (или больших самой высокой) моды, устанавливаем существование экспоненциальных волн и объясняем действие фильтров.  [c.12]

В более общей постановке задача может быть сформулнрована следующим образом. Пусть непараметрическая система с п степенями свободы, описываемая, вообще говоря, связанными обобщенными координатами х , х ,. .х , совершает вынужденную вибрацию под действием периодического возбуждения, которое описывается обобщенной силой, соответствующей одной из обобщенных координат. Пусть далее необходимо максимизировать интенсивность колебаний k-й координаты путем нахождения той из обобщенных координат, соответствие которой обобщенной силе обеспечивает названную максимизацию. Интенсивность колебаний может быть выражена, например, среднеквадратическим значением й-й координаты, отсчитываемой от ее среднего значения, а в случае линейной системы и синусоидальной обобщенной силы — амплитудным значением указанной координаты.  [c.158]


Вынужденные колебания. Как и в случае системы с одной степенью свободы (гл. I, п. 59), обычно называют вынужденными колебаниями какой-нибудь голономной системы в окрестности конфигурации устойчивого равновесия колебания, определяющиеся совместным деНствие.м консервативных сил, к которым относится состояние равновесия, и добавочных сил, например периодических.  [c.372]

Определение термина диссипативная система см. в гл. I. О вынужденных колебаниях диссипативных систем см. в гл. V. Ниже приведены сведения, относящиеся к свободным затухающим колебаниям дисснпативпых систем с одной степенью свободы, когда нелинейность обусловлена только силами сопротивления, Предполагаем, что силы сопротивления обладают отрицательной мощностью, т. е. F- q > О, где q) — уравнение характеристики силы сопротивления (/ [ равно взятой с противоположным знаком обобщенной силе сопротивления). В пп. 1—4 рассмотрены случаи, когда силы сопротивления определяются только скоростями системы, а в п,. 5 — случаи, когда силы сопротивления зависят также от координат системы (позиционное трение, внутреь нее трение).  [c.150]

В п. 3.2 будут рассмотрены свободные колебания одномерного затухающего осциллятора. Затем мы изучим переходную характеристику такого осциллятора, выведенного из положения равновесия силой, изменяющейся по гардюническому закону. Мы обнаружим интересное явление переходных биений между внешней силой и переходным процессом свободных колебаний. Затем мы перейдем к установившимся колебаниям, которые совершает система после окончания переходного процесса. Мы рассмотрим также резонансную характеристику осциллятора, находящегося под действием внешней силы при медленном изменении ее частоты. В п. 3.3 мы будем изучать системы с двумя степенями свободы и обнаружим, что каждая мода свободных колебаний вносит свой вклад в вынужденное движение данного движущегося элемента. В частности, будет выведено очень простое соотношение, которое покажет, что движение данного элемента является суперпозицией независимых вкладов от каждой моды. В п. 3.4 мы обнаружим замечательные свойства системы с несколькими степенями свободы, находящейся под воздействием внешней силы, частота которой либо выше, либо ниже частоты самой низкой моды системы. В п. 3.5 мы обратимся к системе из многих связанных маятников, находящейся под внешним воздействием, и откроем существование экспоненциальных волн.  [c.103]

Автоколебания самовозбуждаются в процессе резания. При этом пульсирующая сила, ответственная за характер колебательного процесса, создается и управляется внутри системы. Автоколебания могут возникать при отсутствии внешней возмущающей периодической силы, и частота вибраций не зависит от геометрических параметров инструментов и режимов резания. Она характеризуется собственной частотой системы. Автоколебания при резании появляются вследствие различных причин а) возникновение в системе физических явлений, создающих возбуждение (например, изменение сил внешнего и внутреннего трения, периодическое изменение сил резания и деформированного объема материала, возникновение тре-щинообразования при отделении стружек, изменение величины нароста и периодический его срыв, уменьшение силы резания с увеличением скорости нагружения, вибрационные следы предыдущих проходов и т. п.) б) изменение состояния упругой системы (со многими степенями свободы) приводит к тому, что в процессе резания режущая кромка инструмента описывает в плоскости, перпендикулярной ей, замкнутую эллиптическую траекторию. Накладываясь на заранее заданное движение инструмента, это возмущенное колебательное движение создает автоколебание системы инструмент — деталь. Необходимо от-.адетить, что вынужденные колебания и автоколебания находятся во взаимосвязи и одновременно воздействуют на технологическую систему. Упругая система, реагируя на изменение усилий резания, изменяет величины деформаций отдельных своих звеньев и таким образом способствует возбуждению колебаний различной частоты и амплитуды. Эти колебания режущего инструмента вызывают, в свою очередь, периодическое изменение площади сечения стружки. На обработанной поверхности детали и на наружной поверхности стружки появляются шероховатости (мелкие пилообразные зубчики разной высоты и формы). Колебания режущей кромки могут иметь частоту  [c.59]

Чтобы показать, насколько удобно пользоваться этим условием, рассмотрим электродвигатель массой гпх, установленный на балку с жесткостью (рис. 3.18, а). Вращение вектора силы Р при неуравновешенном роторе может вызвать значительные колебания системы, когда круговая частота принимает критическое значение Юкр = V к Шх- Для того чтобы подавить эти вынужденные колебания, присоединим дополнительную массу т , к имеющей жесткость 2 пружине, как показано на рис. 3.18, б. Если массу т , и жесткость к подобрать так, чтобы выполнялось условие У к т , = = (о р, получим систему с двумя степенями свободы, в которой не будут возникать колебания, обусловленные колебаниями электродвигателя, поскольку дополнительная масса колеблется с амплитудой — Р к . Подобная дополнительная система называется динамическим гасителем колебаний, поскольку она может предотвратить возникновение колебаний, вызываемых вращающимися с постоянной скоростью узлами машин, если в системе отсутствует демпфирование. Для того чтобы спроектировать гаситель колебаний , подберем сначала жесткость к<1 пружины такой, чтобы амплитуда — РУк была достаточно большой, а затем подберем массу такой, чтобы выполнялось условие - / к т2 = сокр. Для того чтобы быть эффективным и при скоростях, отличных от ОЗкр, требуется ввести в систему действительное сопротивление (см. пример, описанный в конце п. 3.8).  [c.229]


В гл. 3 рассматривались свободные и вынужденные колебания систем с двумя степенями свободы при вязком демпфировании, теперь займемся исследованием поведения систем с демпфировайием, имеющих п степеней свободы. Когда в состоящей из трех масс системе силы сопротивления создаются гидравлическими амортизаторами (рис. 4.3), уравнения движения в усилиях можно записать в следующем виде  [c.302]


Смотреть страницы где упоминается термин Вынужденные колебания в системах с п степенями свободы : [c.29]    [c.510]   
Смотреть главы в:

Основы теории колебаний  -> Вынужденные колебания в системах с п степенями свободы



ПОИСК



Вынужденные колебания Отличие механических систем линейных с одной степенью свободы

Вынужденные колебания в системах с несколькими степенями свободы

Вынужденные колебания замкнутых систем со многими степенями свободы

Вынужденные колебания линейных систем с одной степенью свободы

Вынужденные колебания механических систем линейных с одной степенью свободы

Вынужденные колебания произвольной системы с одной степенью свободы. Резонанс

Вынужденные колебания систем г одной степенью свободы

Вынужденные колебания системы с 1-ой степенью свободы без учета сил сопротивления

Вынужденные колебания системы с конечным числом степеней свободы

Вынужденные колебания системы с одной и двумя степенями свободы под действием синусоидальных возмущающих сил

Вынужденные колебания системы с одной степенью свободы в случае периодической возмущающей силы

Вынужденные колебания системы с одной степенью свободы при действии непериодической нагрузки

Вынужденные колебания системы с одной степенью свободы, вызываемые импульсами мгновенных сил

Вынужденные колебания системы с одной степенью свободы. Резонанс

Вынужденные колебания системы со многими степенями свободы. Принцип взаимности

Вынужденные колебания твердого тела с одной степенью свободы под действием гармонического внешнего воздействия при наличии в системе линейного демпфера

Вынужденные колебания упругих систем с одной степенью свободы

Вынужденные колебания упругих систем, приведенных к системам, с одной степенью свободы

Дифференциальные уравнения вынужденных колебаний системы с одной степенью свободы

Задание Д.25. Исследование вынужденных колебании механической системы с одной степенью свободы

Задание Д.26. Исследование вынужденных колебаний механической системы с двумя степенями свободы

Колебания вынужденные

Колебания вынужденные свободы

Колебания вынужденные системы с двумя степенями свободы

Колебания линейной диссипативной системы конечным числом степеней свободы вынужденные

Колебания системы вынужденные

Малые затухающие и вынужденные колебания системы с одной степенью свободы

Неустановившиеся вынужденные колебания в системах с конечным числом степеней свободы

Неустановившиеся вынужденные колебания в системах с одной степенью свободы

Общее решение дифференциального уравнения вынужденных колебаний системы с одной степенью свободы

Система с конечным числом степеней свободы 15, 17, 31, 35, 78, 126 — Вынужденные колебания 105—109 — Свободные колебания

Система со многими степенями свободы Амплитуды вынужденных колебаний

Система со многими степенями свободы, колебания вынужденные

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте