Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактная коррозия сталей

Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов обеспечивает свинчиваемость резьбовых деталей.  [c.899]

Коррозионные проблемы на участке разделения углеводородов 4 связаны не только с получением самого поглотительного раствора, но и с выделением из него меди, в тех случаях, когда стабильность раствора по тем или иным причинам нарушена. Это может произойти вследствие изменения предписанной рецептуры и режима приготовления или регенерации поглотительного раствора, вследствие чрезмерного повышения температуры или в результате попадания в раствор посторонних химических реагентов, а также и по другим причинам. Известен случай, когда в результате аварии в поглотительный раствор попал хладоноситель из охладительной системы, что привело к осаждению меди на многих участках аппаратов и трубопроводов, изготовленных из обычной углеродистой стали. Омеднение некоторых мест на внутренних стенках аппаратов в дальнейшем вызвало интенсивную контактную коррозию стали, являющейся анодом. Поскольку тонкий слой меди обычно держится на протравленной стальной поверхности прочно, действующие макроэлементы сохраняются очень долго, В такой частично омедненной аппаратуре коррозия, как правило, не при-- останавливается и тогда, когда испорченный поглотительный раствор заменяется свежим. Привести аппаратуру в надежное рабочее состояние можно, лишь удалив с ее внутренней поверхности медные отложения, что очень трудно, а иногда и невозможно.  [c.190]


В электролитах, в которы.ч коррозия протекает с кислородной деполяризацией, например в морской воде, предельный диффузионный ток увеличивается при перемешивании, вследствие чего увеличивается и сила тока контактной пары. Такое явление наблюдается для пар Fe — Си, Fe — нержавеющая сталь и др. Ниже приведены данные, показывающие влияние скорости движения морской воды на скорость контактной коррозии (в числителе скорость движения воды 0,15 м/с, в знаменателе - 2,4 м/с).  [c.201]

Прокатная окалина на стали тоже может работать в качестве катода в паре со сталью. Обычно в окалине имеются видимые и невидимые трещины, и поэтому сталь с прокатной окалиной часто подвергается язвенному разрушению вследствие контактной коррозии.  [c.202]

На скорость контактной коррозии оказывает влияние скорость движения воды (табл. 3). При малых скоростях движения воды влияние разнородных положительных контактов на коррозию стали практически одинаково, при больших скоростях проявляется индивидуальная природа катода и в наибольшей степени усиливают коррозию стали медь и никель.  [c.9]

Для алюминиевых бурильных труб с увеличением pH от 1 до 13 меняется характер коррозионного поражения слоевая коррозия — в сильнокислой области, точечная — при рН=3—11, равномерная — в сильнощелочной среде. Алюминиевые бурильные трубы целесообразно применять при использовании буровых растворов с pH от 4 до 10,5, так как сдвиг потенциала в отрицательную область приводит к увеличению тока контактной коррозии. Существенное влияние pH раствора оказывает на коррозионно-усталостную выносливость как алюминиевых сплавов, так и стали.  [c.107]

Фретинг-эффект. Сильное влияние на усталостную прочность титановых сплавов оказывает фретинг-эффект, или контактная коррозия в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [106, 158—160]. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и пр.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения ее в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [ 158, 160] сильно влияет только при низких значениях. При более прочных креплениях или плотных посадках при удельных давлениях более 30—50 МПа усталостная прочность изменяется мало. Так, прессовая посадка втулки с удельным давлением 50 МПа снижает усталостную прочность технически чистого титана с 320 до 112 МПа [ 158]. Дальнейшее увеличение удельного давления посадки до 200 МПа снизило O j до 103 МПа. В среднем предел выносливости при наличии фретинг-эффекта у титановых сплавов на воздухе при контактировании с однородным сплавом 20- 40 % от исходного предела  [c.161]


Сила притяжения к натертому янтарю и некоторые другие проявления электричества были известны уже в древности. По гвоздям из обломков одного старого судна стало известно, что римляне уже знали о контактной коррозии, связанной с протеканием электрического тока. Для защиты от червей-древоточцев на деревянных досках античных гребных судов применяли покрытия из свинцовых пластин, прикрепленных медными гвоздями. Между свинцом и этими гвоздями образовывался коррозионный элемент, так что с течением времени при работе в соленой морской воде менее благородные пластины свинца сильно корродировали вокруг медных гвоздей и отваливались. Античные строители судов нашли простое решение они покрывали свинцом также и головки медных гвоздей. В итоге между обеими металлическими деталями не образовывалось коррозионного элемента и ток между ними уже не протекал, благодаря чему прекращалась и коррозия [20].  [c.32]

В морской воде почти все обычно используемые металлы и конструкционные стали проявляют склонность к коррозии. Кроме того, повышенная опасность коррозии возникает при составных конструкциях из различных металлов вследствие хорошей электропроводности морской воды. Для оценки контактной коррозии могут быть использованы ряд напряжений различных металлов в морской воде (табл. 2.4) и правило площадей но формуле (2.43). Кроме того, существенное влияние оказывают сопротивления поляризации [см., формулу (2.42)]. Общее представление об этих условиях дают диаграммы контактной коррозии [12, 13]. К образованию контактных коррозионных элементов могут привести и участки с различной структурой в о>дном и том же  [c.355]

При контактной коррозии важную роль играют вторичные явления, выражающиеся в изменении потенциалов контактных пар. Так, при контакте железа с нержавеющими сталями происходит разрушение железа как анода, но вместе с тем по мере накопления продуктов коррозии на нержавеющей стали доступ кислорода затрудняется и последняя подвергается разрушению при этом определенное значение имеет и щелевой эффект [7]. На интенсивность контактной коррозии влияет соотношение площадей катода и анода, которое определяет поляризуемость каждого электрода [80—81].  [c.82]

В атмосферных условиях контактная коррозия зависит от характера атмосферы так, например, сплав МЛ5 в контакте с оцинкованной сталью является анодом и в промышленной атмосфере корродирует в 2 раза быстрее, чем в морской, и в 4 раза быстрее, чем в сельской. Изменение метеорологических элементов атмосферы оказывает на контактную коррозию более сильное влияние, чем на изолированные металлы.  [c.82]

Для получения сравнительных данных изучали контактную коррозию в морской атмосфере и в морской воде как отдельных цветных металлов в контакте со сталью, так и контактов двух разных цветных металлов со сталью. Стенды помещали на высоте 2 м от зеркала воды, так что образцы периодически смачивались и высыхали. Вторую серию опытов проводили в бухте Батумского порта на глубине 2 л в течение 6 месяцев осенне-зимнего периода [81]. Образцы снимали со стенда и обрабатывали через 10, 20, 50, 70, 80, 90 и 180 сут..  [c.83]

Контактирование сталей, одинаковых по химическому составу (например, низколегированных и углеродистых), допускается, но при этом контактная коррозия полностью не исключается. По мере того как увеличивается в сталях концентрация легирующих элементов, контактное воздействие этих сталей усиливается. Объясняется это тем, что при увеличении концентрации хрома, никеля и меди увеличивается разность потенциалов [65].  [c.84]

Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних.  [c.84]


Цинк в субтропической атмосфере при достаточной толщине электрохимически защищает железо и сталь. Олово не обнаружило каких-либо защитных свойств. При малейшем повреждении покрытия железо корродировало во много раз сильнее, чем в отсутствие покрытия. Поэтому в приморской и промышленной атмосферах такие контакты не должны применяться. Дополнительные защитные меры, в частности пассивирование луженых деталей в сильных окислителях с последующим применением масел и смазок или ингибиторов, уменьшали контактную коррозию.  [c.84]

Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах.  [c.124]

В — в парах. И — емкости для хранения, перегонные установки (включая установки для 58%-ной уксусной кислоты, содержащей 2% муравьиной кислоты), центрифуги (также в присутствии уксусного ангидрида, бензола, салициловой кислоты или сульфата хрома), резервуары (при 100°С и в присутствии органических растворителей), установки для очистки пищевого уксуса триоксидом хрома, емкости для транспортировки, реакторы для окисления уксусного альдегида воздухом или кислородом в присутствии ацетата марганца в качестве катализатора при 55°С, изготовленные из углеродистой стали и покрытые алюминием. Соли тяжелых металлов, минеральные кислоты, хлориды, муравьиная кислота в значительной степени ускоряют коррозию. Уксус, полученный из неочищенного спирта, воздействует на алюминий гораздо сильнее, чем чистая уксусная кислота такой же концентрации. При контактировании алюминия с аустенитными хромоникелевыми сталями контактная коррозия не наблюдается.  [c.439]

Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием.  [c.75]

Ионы NHJ, находясь в воде, интенсифицируют развитие микрофлоры и тем самым способствуют развитию биогенной коррозии. При pH > 7 соединения, содержащие ионы Fe " , взаимодействуют с молекулярным кислородом, снижая коррозию. Ионы Fe стимулируют катодный процесс и способствуют развитию коррозии. Ионы Си " , осаждаясь на поверхности стали в виде Си, инициируют контактную коррозию. Из анионов наибольшее влияние на процесс коррозии оказывает ион С1 . Его присутствие в воде вызывает интенсивную локальную коррозию. Ионы S0 " также активируют коррозионный процесс. Кремниевая кислота и растворимые силикаты, наоборот, оказывают ингибирующее действие на коррозию металлов.  [c.15]

Образцы из пассивированного алюминия марки АОМ и винты из латуни марки Л62 выдерживали испытание в камере влажности без местных коррозионных повреждений. В то же время контактные соединения этих материалов подвергались заметным повреждениям более сильно была выражена коррозия алюминия и менее заметно коррозия латуни. Контактное соединение меди марки М-1 с травленой и пассивированной сталью 10 вызывает сильную коррозию стали. Бронза марки Бр.КМц 3-1 и пассивированный дуралюмин марки Д16 в закаленном и состаренном  [c.140]

Не допускаются непосредственные контакты детален из магниевых сплавов с деталями из алюминиевых сплавов (кроме сплавов системы А1—Mg), с деталями из меди и медных сплавов, никеля и никелевых сплавов, из стали и благородных металлов, а также с деревом и текстолитом вследствие появления контактной коррозии.  [c.130]

ВЛИЯНИЮ контакта с титаном на скорость коррозии ряда металлов и сплавов при равной площади поверхности контактирующих образцов. Количественно оценивая данные, можно отметить, что электрохимическое поведение титана при контакте в морской воде с другими металлами аналогично поведению нержавеющей стали типа 18-8. Это позволяет сделать вывод о возможности замены нержавеющей стали титаном в условиях контактирования с другими металлами без опасности существенного усиления кон тактной коррозии. При оценке контактной коррозии с титаном как и с другими электроположительными металлами, следует учи тывать соотношение площадей контактирующих металлов и уда ленность от места контакта. Так, по данным Коттона, в воде в кон такте с титаном при соотношении площадей 10 1 (титан—катод другой металл — анод) сильно корродировали углеродистая сталь алюминий, пушечная бронза умеренной коррозии подвергались алюминиевая латунь, сплавы медь-никель, с незначительной ско ростью корродировала нержавеющая сталь типа 18-8. При обрат ном соотношении площадей (Т1 Me = 1 10) единственным ме таллом, который подвергался коррозии, была углеродистая сталь Эффект контактной коррозии при этом соотношении площадей был в 12 раз меньше, чем при соотношении площадей 10 1.  [c.37]

Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]


НО стоек в мягкой чистой воде, в почве и кислой химической среде. Интенсивно корродирует в местах малого доступа кислорода, склонен к контактной коррозии со сталью и медными сплавами.  [c.476]

Скорость коррозии кадмия под воздействием коррозионной среды линейно зависит от времени срок действия покрытия пропорционален толщине. Кадмий обеспечивает хорошую защиту стали при воздействии конденсата в замкнутом пространстве, при погружении в стоячую или мягкую нейтральную воду, в щелочной или кислой средах. Кадмиевое покрытие толщиной 25 мкм защищает сталь в промышлен Гой атмосфере в течение года, а в морской воде — до пяти лет. Благодаря низкому сопротивлению скручивающим усилиям кадмий используется для изделий, имеющих резьбу и подвергающихся частой сборке и разборке. Кадмий предотвращает контактную коррозию деталей с алюминием.  [c.476]

Рис. 13.2. Подтравливание никелевого гальванического покрытия на стали в результате контактной коррозии в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие циклического нагружения при испьгганиях на коррозионную усталость [2а] Рис. 13.2. Подтравливание никелевого <a href="/info/48864">гальванического покрытия</a> на стали в результате <a href="/info/39675">контактной коррозии</a> в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие <a href="/info/28783">циклического нагружения</a> при испьгганиях на коррозионную усталость [2а]
Один из способов снижения наводороживания - нанесение подслоя из другого металла, обладающего более низкой водородопроницае-мостью. Эффективно в качестве подслоя при кадмировании использовать медь или никель. Оба металла снижают степень наводороживания стали, но не исключают его полностью. Кроме того, подслой меди и никеля может вызвать в некоторых агрессивных средах развитие контактной коррозии, ухудшающей коррозионное состояние изделия. Поэтому при выборе металла подслоя необходимо учитывать поведение системы в целом.  [c.104]

При коррозии в морской воде или других нейтральных средах вследствие высокой электропроводности воды дальность действия контакта велика, поэтому соотношение площадей поверхности контактирующих металлов существенно влияет на характер контактной коррозии. Например, сочетание медных образцов большой площади с относительно малой площадью образцов из нержавеющей стали в морской воде опасно для нержавеющей стали. В этом случае сталь, активируясь, может стать анодной по отношению к меди, и тогда возможно сильное ускорение коррозии нержавеющей стали. Наоборот, контакт малых деталей с большими поверхностями нержавеющей стали более опасен для медных С1Тлавов в этом случае вероятнее устойчивое катодное состояние стали по отношению к меди и возможно значительное ускорение коррозии меди за счет контакта со сталью.  [c.202]

В стальных конструкциях при эксплуатации в атмосферных условиях можно применить алюминиевые заклепки. Дальность действия контакта в тонких пленках электролитов не превышает 5—6 мм. Поэтому если применить оцинкованную шайбу или шайбу из изоляционного материала, контакт стали с алюминием не представляет опасности. Защитные покрытия на крепежных деталях должны быть такие же, как у соед 1Няемых деталях, например, для оцинкованных деталей должны применяться оцинкованные болты. При частом раскрытии элементов рекомендуется применять крепежные детали из пассивных металлов, однако с предупреждением контактной коррозии.  [c.203]

Влияние коррозионных повреждений на усталостную прочность в сильной степени определяется свойствами материала. Наблагоприятное влияние фреттинг-коррозии увеличивается с зостом прочности материала и размера детали. Было показано 65, 66], в частности, что более существенное коррозионное повреждение на стали 11Х11Н2ВМФ (применяемой на лопатках компрессора авиадвигателя) в состоянии отпуска при 680°С привело к меньшему падению усталостной прочности, чем меньшие повреждения на той же стали с отпуском при 580°С. В тех же работах было показано, что контактная коррозия в титановых сплавах может происходить не только при комнатной, но и при повышенных до 400°С температурах.  [c.139]

Пример 3.3. Оценить максимальную скорость контактной коррозии при сопряжении переборки из сплава AM Г-61 со стальным (сталь 09Г2)  [c.184]

По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77].  [c.73]

Из материалов, используемых в конструкции приборов, наиболее стойкими оказались высокохромистые и хромоникелевые нержавеющие сплавы, алюминий, бронза, медь и медные сплавы. Когда в конструкции и медь, и медные сплавы находились в контакте со сталью, алюминием, свинцом, эловом и его сплавами, то наблюдалась коррозия последних сплавов. В таких случаях необходимо применять специальные меры защиты от контактной коррозии, а также специальные покрытия.  [c.79]

Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят J приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен-  [c.83]

Контактная коррозия обусловлена контактом двух разнородных металлов, при котором металл с бойее отрицательным электродным потенциалом становится анодом и усиленно корродирует. Межкристаллитная коррозия проявляется при использовании нержавеющих аустенитных сталей преимущественно в растворах азотной кислоты и заключается в избирательной коррозии металла по границе зерен. Характерным признаком разру-34  [c.34]

Исследования контактной коррозии пары алюминиевый сплав — сталь СтЗ, проведенные путем периодического погружения в 0,1%-ный раствор хлорида натрия на 10 мин с последующей выдержкой на воздухе в течение 50 мин, показывают, что скорость коррозии составляет 0,08—0,12 мм/год для сплавов В92, В93, 01915 и 0,02—0,04 мм/год для сплавов АМг5, АМгб, АДЗЗ.  [c.130]

На всех перечисленных выше образцах, за исключением заделочной арматуры из нержавеющей стали AISI 304 и стальной проволоки, видимой коррозии не было. Внутренние поверхности арматуры из нержавеющей стали марки 304 подверглись сильной щелевой коррозии. Скорость этой щелевой коррозии, по-видимому, увеличивалась за счет образованной двумя разными металлами гальванической пары, анодом которой являлась нержавеющая сталь. На одном из титановых канатов проволока из малоуглеродистой стали, использованная для обвязывания конца каната почти полностью разрушилась вследствие контактной коррозии.  [c.403]


При температурах 385—445° С в полифинилах не стойки магний, цирконий и его сплавы, а также гафний [1,69], [1,70]. Цирконий в этих условиях становится очень хрупким из-за образования гидридов. Увеличение содержания воды в полифинилах приводит к значительному возрастанию скорости коррозии. Движение органического теплоносителя со скоростью 9 м/сек увеличивает лишь скорость коррозии циркония [1,70]. Коррозионное растрескивание и контактная коррозия в органических теплоносителях не наблюдаются [1,70]. Скорость коррозии углеродистых, низколегированных нержавеющих сталей и алюминиевых сплавов в полифинилах при температуре 380—445° С не превышает 0,025 мм/год. При температуре 430°С наиболее пригодны для изготовления оболочек тепловыделяющих элементов аустенитная нержавеющая сталь, алюминий типа САП, содержащий до 10% окиси алюминия, и бериллий [1,71]. В качестве основного конструкционного материала для органических теплоносителей может быть рекомендована углеродистая или низколегированная сталь. Это объясняется тем, что в высокотемпературном контуре, заполненном органическим теплоносителем, углеродистая сталь коррозии фактически не подвергается. Если принять соответствующие меры, то можно избежать и отложения продуктов полимеризации на теплопередающих поверхностях. Чтобы улучшить стойкость конструкционных материалов, органические теплоносители необходимо очищать от воды [1,72].  [c.55]

А. П. Мамет и Г. А. Каганер [69] изучали коррозию стали под действием свободной углекислоты. Их исследования показали, что увеличение концентрации СО 2 резко повышает скорость коррозии стали лишь в области qq = О ч- Ю мг/л. Дальнейшее увеличение концентрации Og сопровождается лишь небольшим увеличением скорости коррозии и некоторым снижением pH. Таким образом, хотя увеличение содержания в воде свободной углекислоты нежелательно, все же можно полагать, что при контактном подогреве умягченной воды, содержащей СО2 в количестве более 10 мг/л, увеличение содержания СО а не приведет к заметному росту скорости коррозии.  [c.140]

А. П. Мамет и Г. А. Каганер [100] изучали коррозию стали под действием свободного СО2. Их исследования показали, что увеличение концентрации СО2 резко повышает скорость коррозии стали лишь в области С02 = 0 10 мг/л. Дальнейшее увеличение концентрации СО2 сопровождается лишь небольшим повышением скорости коррозии и некоторым снижением pH. Таким образом, хотя увеличение в воде содержания СО2 и нежелательно, все же можно полагать, что при контактном подогреве умягченной воды, в которой концентрация СО2 превышает 10 мг/л, дальнейший возможный рост ее в воде не приведет к заметному увеличению скорости коррозии.  [c.136]

Контактная коррозия наиболее часто наблюдается на деталях, изготовленных из стали и агюминиевых сплавов. Процесс же коррозии возникает в самых разнообразных условиях. В машинах такое повреждение может встречаться на участках прессовой посадки втулок на вал. При  [c.132]

В подавляющем большинстве случаев наружная коррозия имеет характер отдельных, сравнительно небольших по площади очагов при наличии на остальных участках сплошной равномерной и сравнительно небольшой коррозии. В отсутствие опасных потенциалов блуждающих токов характер мест повреждений позволяет считать, что интенсивная местная коррозия незащищённой покрытиями поверхности трубы происходит вследствие периодически частого доступа влаги (точнее кислорода в ней). Этот процесс имеет место как в беска-нальных прокладках, так и в канальных при затоплении их водой и особенно при заносе грязью. Трубопровод, полностью погружённый в воду, подвергается более медленной коррозии, нежели находящийся во влажной тепловой изоляции. Переменный нагрев теплопровода приводит к перемещению влаги в слое изоляции, увеличению доступа кислорода и, следовательно, интенсификации процесса коррозии. Повышение температуры теплоносителя от 20 до 75 °С приводит к увеличению скорости коррозии стали в контакте с минеральной ватой в 4-5 раз. С дальнейшем ростом температуры теплоносителя до 100 °С скорость коррозии резко снижается, что связано с подсушиванием контактного слоя тепловой изоляции и деаэрацией воды. Таким образом, наиболее желательным для замедления процессов наружной коррозии подземных теплопроводов был бы тепловой режим работы сетей с минимальной температурой в 95-100 °С [8].  [c.30]

Обработанные детали обдувают сжатым воздухом при д влс-нни 122—203 кПа для удаления остатков металлического песке. Метод непригоден для поверхности деталей из алюминия, магнии и их сплавов. Для очистки паяных поверхностей деталей из коррозионностойких сталей, титана, алюминия и их сплавов (плотная трудноудаляемая окалнна) применяют электрокорунд зернистостью № 16—80 в сочетании с гидропескоструйным методом обработки. Прн металлопескоструйной обработке деталей на коррознониостой-ких сталей во избежание контактной коррозии оставшиеся частицы песка удаляют травлением или электрополированием.  [c.97]


Смотреть страницы где упоминается термин Контактная коррозия сталей : [c.85]    [c.8]    [c.34]    [c.128]    [c.194]    [c.199]    [c.484]    [c.210]   
Морская коррозия (1983) -- [ c.247 ]



ПОИСК



Контактная коррозия

Сталь коррозия



© 2025 Mash-xxl.info Реклама на сайте