Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактная коррозия в атмосферных условиях

Контактная коррозия в атмосферных условиях  [c.92]

Отличительной особенностью контактной коррозии в атмосферных условиях является протекание процесса на поверхности электродов, лежащих в одной плоскости и покрытых тонким слоем электролита. Ввиду небольшой дальности действия контакта в этих условиях даже при наличии в системе большого числа металлов расчеты можно вести для биметаллической системы.  [c.93]


Общий вывод из всех экспериментальных данных, полученных в лабораторных и естественных условиях, заключается в том, что, вопреки существующему мнению о малой роли контактов при атмосферной коррозии, их влияние на самом деле велико. Степень увеличения коррозии за счет контакта, как правило, в тонких слоях электролитов выше, чем в объеме. Это объясняется концентрацией коррозии из-за небольшой дальности действия контакта непосредственно у границы. Если изучать контактную коррозию, как это часто делается, на образцах с шириной электродов, значительно превосходящей дальность действия контакта, и коррозионные потери отнести ко всей поверхности анода, то можно прийти (и часто приходят) к ложному выводу о безопасности контактной коррозии в атмосферных условиях. На самом же деле, как показывают наблюдения, контактная коррозия достигает часто больших размеров, концентрируясь непосредственно вблизи контакта на расстоянии 5—10 мм. Уже за короткий период многие гальванические  [c.126]

Лучше всего поддается прогнозированию контактная коррозия в атмосферных условиях и морской воде, в случаях, имеющих весьма важное практическое значение.  [c.28]

Особенностью контактной коррозии в атмосферных условиях является большая глубина коррозионного поражения непосредственно в месте контакта при относительно небольших общих материальных потерях. Это связано со спецификой распределения плотности тока по поверхности гальванического элемента контактирующих металлов (рис. 20). При атмосферной коррозии, когда речь идет о весьма тонких слоях электролита, на поверхности подвергнутой коррозии электросопротивление последних резко увеличивается с удалением от места контакта, что приводит к соответствующему падению плотности тока до нулевой. При этом плотность тока в месте контакта на стороне анода в несколько раз выше, чем на катоде. Обычно контакты в данном случае оказывают влияние на расстоянии от линии контакта, составляющем несколько миллиметров. На большем удалении коррозия обеих частей гальванической пары протекает независимо от наличия контакта. Подобный характер контактной коррозии приводит к тому, что на локальные материальные потери не оказывают влияния площади катодных и анодных участков при прочих равных условиях они определяются протяженностью линии контакта.  [c.29]

Контактная коррозия в атмосферных условиях в сильной степени зависит от состава атмосферы. Так, например, коррозия магниевого сплава МЛ5 в контакте с алюминиевым сплавов В95 при переходе от промышленной атмосферы к морской увеличивается в несколько раз. Аналогичное явление наблюдается для многих пар. В атмосферных условиях не возникает контактной коррозии между медью, серебром и золотом, между железом, углеродистыми сталями, свинцом и оловом, между алюминием цинком и кадмием.  [c.107]


Рис. 10.32. Образец в виде болта с навитой иа иего проволокой для изучения контактной коррозии в атмосферных условиях Рис. 10.32. Образец в виде болта с навитой иа иего проволокой для изучения <a href="/info/39675">контактной коррозии</a> в атмосферных условиях
Рис. 3. Монтаж образцов для испытания на контактную коррозию в атмосферных условиях. Рис. 3. <a href="/info/543782">Монтаж образцов</a> для испытания на <a href="/info/39675">контактную коррозию</a> в атмосферных условиях.
Рис. 4. Монтаж образцов для испытания нержавеющей стали на контактную коррозию в атмосферных условиях. Рис. 4. <a href="/info/543782">Монтаж образцов</a> для испытания <a href="/info/51125">нержавеющей стали</a> на <a href="/info/39675">контактную коррозию</a> в атмосферных условиях.
Возможность контактной коррозии при сочленении разнородных металлов должна обязательно учитываться конструкторами и технологами при конструировании и эксплуатации различного оборудования. Вопросам контактной коррозии в различных условиях (нейтральных и агрессивных средах, в атмосферных условиях и, особенно, в морской воде) уделяется большое внимание [6, 7, 50, 51].  [c.77]

Помимо визуальных наблюдений и оценки коррозии по изменению веса образцов ценные сведения о коррозионной стойкости можно получить по данным об изменении механических свойств металла вследствие коррозии. Они, естественно, особенно интересны в тех случаях, когда весовой метод по тем или иным причинам не может быть использован. Помимо этого, может применяться метод измерения глубины коррозионных поражений и металлографические методы. Последние могут дать ценные сведения (321] о механизме коррозионного разрушения металла или в тех случаях, когда одним из требований к защитному покрытию является сохранение высокой контактной проводимости в атмосферных условиях. Для оценки омического сопротивления и изоляционных свойств пленок продуктов коррозии можно применять метод измерения потенциала пробоя защитной пленки, описанный выше.  [c.208]

Ряд, соответствующий коррозии в атмосферных условиях, разделен на пять групп. Это означает, что контактная коррозия в пределах каждой группы невелика.  [c.29]

Коррозия, развивающаяся при соприкосновении двух или нескольких разнородных в электрохимическом отношении металлов в электролитической среде, называется контактной. В атмосферных условиях она обусловлена усилением анодного процесса на относительно небольшом участке поверхности металла. В основе изучения контактной коррозии лежит теория многоэлектродных систем, разработанная Г. В. Акимовым и его учениками [2, 7, 8].  [c.82]

В атмосферных условиях контактная коррозия зависит от характера атмосферы так, например, сплав МЛ5 в контакте с оцинкованной сталью является анодом и в промышленной атмосфере корродирует в 2 раза быстрее, чем в морской, и в 4 раза быстрее, чем в сельской. Изменение метеорологических элементов атмосферы оказывает на контактную коррозию более сильное влияние, чем на изолированные металлы.  [c.82]

В отличие от контактной коррозии морской и минеральной водах дальность действия контакта в атмосферных условиях в тонких слоях электролита не превышает 5—6 мм.  [c.82]


Допустимые контакты могут применяться в изделиях без защиты от контактной коррозии. Ограниченно допустимые контакты в атмосферных условиях могут применяться в изделиях.  [c.252]

Коррозия в тонких слоях может сконцентрироваться в основном вблизи контакта, если только большая плотность тока не приведет к появлению анодной пассивности. Очевидно, заключение о допустимости того или иного контакта разнородных металлов в атмосферных условиях неправильно делать на основе исследования поведения контактных пар в объеме электролита.  [c.140]

Другим примером может служить поведение пары железо — алюминий. До сих пор вопрос о допустимости контакта железа с алюминием не нашёл однозначного решения. Некоторые авторы считают его допустимым, другие недопустимым. Несмотря на значительную разность потенциалов, имеются указания об успешном использовании этих контактов в атмосферных условиях. Вместе с тем в морских атмосферах и на кораблях наблюдается часто усиленная коррозия алюминиевых конструкций, находящихся в контакте с железом. Вопрос, как справедливо отмечает Эванс, довольно сложный и он не может быть просто решен на основе одной разности потенциалов. Хотя установленный много лет тому назад критерий допустимой разности потенциалов в четверть вольта и оказался полезным, чтобы избежать явно недопустимых контактов, в настоящее время с его помощью нельзя получить удовлетворительного решения вопроса. К тому же при контактной коррозии приходится учитывать и вторичные явления, изменяющие поведение контактных пар. Так, например, при контакте железа с нержавеющими сталями или алюминием наблюдается часто усиленная коррозия обоих металлов. Полагают, что железо в контакте с нержавеющими сталями вначале работает в качестве анода. По мере накопления продуктов коррозии последние затрудняют доступ кислорода к нержавеющим сталям, который нужен для поддержания их в пассивном состоянии, и они начинают также корродировать.  [c.20]

Для замедления контактной коррозии железоалюминиевых металлоконструкций в атмосферных условиях на поверхность контактирующих металлов наносят смесь хромата кобальта и двойной окиси кобальта-хрома. Адгезию ингибирующей смеси повышают использованием жидкого натурального или синтетического каучука. Концентрация ингибирующей смеси составляет 10. .. 20 %.  [c.698]

Контактная коррозия — электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите. При этом коррозия металла с более отрицательным потенциалом обычно усиливается, а коррозия металла с более положительным потенциалом замедляется или полностью прекращается. Контактная коррозия часто наблюдается в морской воде, имеющей хорошую электропроводность. Она может протекать и в атмосферных условиях — максимальная в месте непосредственного контакта разнородных металлов. Этот вид коррозии возникает также, когда металл имеет на поверхности пористое металлическое покрытие, отличающееся по своему потенциалу от потенциала металла основы.  [c.41]

В этом случае в электролите образуется гальванический элемент, работа которого определяет скорость коррозии каждого из контактируемых металлов. Коррозия более электроотрицательного электрода ускоряется, а коррозия более электроположительного—замедляется. Интенсивность контактной коррозии зависит от соотношения площадей катодных и анодных участков. Чем больше это соотношение, тем энергичнее разрушается анодный металл. Интенсивность контактной коррозии в местах непосредственного соприкосновения металлов зависит также от окружающих условий. В атмосферных условиях, особенно в промышлен-  [c.47]

До сих пор заключения о контактной коррозии делали в основном на основании начальной разности потенциалов, поскольку эти данные были более доступны. Однако, как было выше показано, электродвижущая сила элемента, хотя и является важной характеристикой, не определяет однозначно коррозионного тока элемента. При значительной разности потенциалов ток пары благодаря большой поляризации может быть очень малым и, наоборот, может быть пара с незначительной разностью потенциалов, которая, однако, благодаря малой поляризуемости будет давать большой ток. Поэтому правильно судить об опасности того или иного контакта можно только на основе значений токов. К сожалению, до сих пор- не было предложено удовлетворительных методов определения тока пар для условий атмосферной коррозии.  [c.112]

Заслуживает внимания вывод авторов [5Г] относительно того, что в сравнительно разбавленных электролитах (0,01%-ный раствор хлористого натрия) неплакированный дюралюминий под влиянием контакта с катодными металлами может подвергаться разрушению в значительно большей степени, чем в концентрированных электролитах (морская вода). Последнее объясняется тем, что в разбавленных электролитах алюминиевая плакировка при контакте с металлом, обладающим более положительным потенциалом, не в состоянии обеспечить электрохимическую защиту сердцевины (дюралюминий). Если это так, то на морских сооружениях и конструкциях, эксплуатируемых в приморских районах, может возникнуть заметная контактная коррозия алюминиевых сплавов и в условиях атмосферной коррозии.  [c.133]

В некоторых руководствах вопросы контактной коррозии не рассматриваются отдельно для атмосферных условий и условий полного погружения. Упоминается лишь, что в любых условиях выбранные материалы должны по возможности иметь наименьшую разность потенциалов или находиться в пределах одной группы, металлы которой имеют близкие значения потенциалов.  [c.174]

При применении промежуточных шайб между заклепками и листовым материалом в некоторых случаях допускается применять заклепки из менее благородного металла. Однако при этом следует, учитывать условия эксплуатации изделия. Покажем это на примере сочленения стали с алюминием. Если внешняя сторона конструкции погружена в электролит (рис. 64,а), применение заклепок из алюминиевых сплавов исключается, поскольку малая анодная поверхность под влиянием большого катода (стали) будет сильно разрушаться. В этих условиях наиболее приемлемым является применение стальных заклепок. Со стороны электролита получаем контакт стали со сталью. С другой же стороны, где контакт подвергается воздействию более слабой коррозионной среды, например атмосферного воздуха, для уменьшения контактной коррозии между алюминиевым листом и стальной заклепкой помещается оцинкованная стальная шайба или изолятор.  [c.192]


В зависимости от характера агрессивной среды электрохимическая коррозия может быть структурной (вследствие неоднородности металла по структуре), атмосферной, почвенной (на металл действует почва), кислотной, щелочной, биологической (протекает в подземных условиях при участии микроорганизмов), в водных растворах солей, коррозия блуждающими токами, контактная (при контакте двух разнородных металлов).  [c.21]

Коррозия — это процесс физико-химического разрушения металла под влиянием внешней среды. По характеру процесса различают химическую и электрохимическую коррозию. В первом случае процесс окисления металла происходит при непосредственном воздействии соприкасающейся с ним среды без появления электрического тока, а во втором случае коррозия протекает в электролитах и сопровождается появлением электрического тока. В зависимости от характера агрессивной среды электрохимическая коррозия может быть атмосферной, почвенной, структурной (вследствие неоднородности металла по структуре), биологической (протекает в подземных условиях при участии микроорганизмов), щелочной, кислотной, контактной (при контакте двух разнородных металлов), коррозией, вызванной блуждающими токами или водными растворами солей. Стойкость против коррозии зависит от химического состава, структуры, состояния поверхности, напряженного состояния металла, а также химического состава, концентрации, температуры и скорости перемещения агрессивной среды по поверхности изделия. Мерой коррозионной стойкости является скорость коррозии металла в данных условиях и среде, которая выражается глубиной коррозии в миллиметрах в год или в потере массы в граммах за час на 1 м поверхности металла.  [c.20]

По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС.  [c.26]

По механизму протекания процесса различают два типа коррозии — химическую и электрохимическую. По условиям протекания могут быть выделены виды коррозии газовая, коррозия в неэлектролитах, в электролитах, почвенная, атмосферная, электрокоррозия, контактная, под напряжением, коррозионная эрозия, биокоррозия.  [c.273]

Сборка крышки с корпусом является ответственной операцией и должна выполняться с соблюдением целого ряда условий. В арматуре ответственного назначения, предназначенной для работы при высоких давлениях и температурах, гайки следует завинчивать с ограничением крутящего момента при помощи динамометрических ключей, ключей с ограничением крутящего момента или с помощью тензометрических устройств, определяющих удлинение шпильки. Резьба шпилек смазывается графитовым или иным составом, предохраняющим резьбу от схватывания металла гайки и шпильки при длительном действии контактных давлений и температуры, а также от атмосферной коррозии.. При затях<-ке гаек следует контролировать отсутствие перекосов крышки по отношению к корпусу, для чего с помощью щупов проверяется зазор между фланцами по всему периметру соединения.  [c.275]

В зависимости от химического состава и структуры металла, природы агрессивной среды, условий ее воздействия электрохимическую коррозию подразделяют на солевую, щелочную, кислотную, атмосферную, почвенную, контактную, биологическую, коррозию под напряжением и пр.  [c.6]

Рис. 10.29. Образец для испытани на контактную коррозию в атмосферных условиях Рис. 10.29. Образец для испытани на <a href="/info/39675">контактную коррозию</a> в атмосферных условиях
Испытания иа контактную (гальваническую) коррозию в атмосферных условиях технически более просты, чем испытания в растворах в лабораторн ,1х условиях,  [c.590]

В стальных конструкциях при эксплуатации в атмосферных условиях можно применить алюминиевые заклепки. Дальность действия контакта в тонких пленках электролитов не превышает 5—6 мм. Поэтому если применить оцинкованную шайбу или шайбу из изоляционного материала, контакт стали с алюминием не представляет опасности. Защитные покрытия на крепежных деталях должны быть такие же, как у соед 1Няемых деталях, например, для оцинкованных деталей должны применяться оцинкованные болты. При частом раскрытии элементов рекомендуется применять крепежные детали из пассивных металлов, однако с предупреждением контактной коррозии.  [c.203]

Фретинг-коррозией называют [17, 23, 52] разрущение металлов, вызываемое одновременным воздействием на них механического истирания другим металлическим или неметаллическим твердым телом и химического или электрохимического коррозионного процесса. В литературе [17, 225—227] этот вид разрушения металлов называют контактная коррозия , фрикционная коррозия , коррозия трения , окисление при трении , окислительный износ , разъедание при контакте и т. д. В соответствии с условиями, вызывающими фретинг-коррозию в практике, при проведении лабораторных испытаний создаются установки, максимально моделирующие эти условия [225]. Несмотря на то что переменных факторов при этом сравнительно много (природа трущихся поверхностей, среда, внещние факторы, удельное давление, частота циклов и др.), установки для испытаний обычно не слишком сложные. Основу каждой из них составляет приспособление, с помощью которого металлический образец при определенном удельном давлении с некоторой частотой перемещается по поверхности другого твердого тела. Вопрос о подводр коррозионной среды решается в разных случаях по разному в зависимости от свойств среды. В частности, при испытаниях в атмосферных условиях приспособление помещают во влажную камеру, при испытаниях в растворах электролитов трущиеся поверхности периодически смачиваются раствором.  [c.138]


Контактная коррозия может проявляться и в атмосферных условиях. Отличительной особенностью контактной коррозии под тонкой пленкой влаги является нерав-  [c.106]

Замедлители коррозии, введенные в коррозионную среду в малых количествах, полностью предупреждают коррозию металлов или значительно снижают ее скорость. Адсорбируясь на поверхности металла, замедлители тормозят протекаеие анодного (анодные замедлители-ингибиторы), или катодного (катодные замедлители-ингибиторы) процесса. Некоторые из замедлителей образуют на металле экранирующую защитную пленку. В зависимости от среды ингибиторы выступают как замедлители кислотной коррозии в растворах щелочей, в нейтральных растворах, в неводных средах, в атмосферных условиях. В большинстве замедлители коррозии являются органическими соединениями. Замедлители разделяются также на летучие и контактные. Назначение замедлителей при удалении с поверхности металла ржавчины или окали Ны сводится к предуореждению потерь металла, непроизводительного расходования травильного раствора, а также процесса наводороживания металла.  [c.80]

Магниевые сплавы обладают наиболее отрицательным потенциалом среди металлов и сплавов, применяемых в конструкциях самолетов. Поэтому выбор допустимых контактов, соотношение площадей контактируемых разнородных металлов, способы их сочленений с учетом возможности их антикоррозионной защиты должны быть тщательно продуманы. Допускаются контакты при эксплуатации в атмосферных условиях с магниевыми сплавами других марок, алюминием и его сплавами, цинком, кадмием, сталью фосфатированной (пропитанной маслом фосфатной пленки или лакокрасочным материалом), сталью хроматированной, медными сплавами лужеными и титаном. Однако и в этих случаях обе контактируемые поверхности следует во избежание непосредственного контакта покрывать слоем лококрасочного покрытия. Контактная коррозия опасна тем, что наиболее сильное разрушение анода, в данном случае магниевого сплава, происходит на границе раздела контактируемых металлов.  [c.49]

В атмосферных условиях никелевое и хромовое покрытим защищают алюминиевые сплавы лучше, чем анодирозаяие. Так, при толщине покрытия 50 мк никель и хром удовлетворительно защищают алюминий от атмосферной коррозии в течение 16 месяцев. Еще лучшими защитными характеристиками обладает двухслойное покрытие никель—хром. Подслой меди не улучшает защитные свойства хромового покрытия. Кадмиевое покрытие используют для защиты алюминия и его сплавов от контактной коррозии. Серебряное, медное, оловянное покрытия применяют для защиты от окисления алюминиевых электрических контактов. Серебряное и родиевое покрыт11Я используют для защиты от коррозии алюминиевых волноводов [210].  [c.106]

Золото и сплавы иа его основе. Золото обладает высокими электро-н теплопроводностью, устойчивостью против коррозии, не окисляется и не образует сернистых пленок, имеет низкое и стабильное переходное сопротивление в раэл вчных атмосферных условиях при нормальной и повышенной температурах. Это делает его незаменимым при изготовлении прецизионных контактов, работающих при малых контактных нажатиях и низком напряжении. Оно имеет очень низкую твердость, которая может быть повышена в несколько раз холодной обработкой давлением.  [c.299]

Ингибиторы атмосферной коррозии делятся на контактные и. летучие. Контактные ингибиторь непосредственно наносят на поверхность металла, а вторые обладают хорошей летучестью в нормальных условиях и самопроизвольно адсорбируются на поверхности металлов, в том числе в щелях, зазорах и т. д. Защита изделий летучими ингибиторами позволяет хранить изделия при любой влажности, но В этом случае предъявляются повышенные требования к барьерным материалам. В состав обоих типов ингибиторов входят группы (радикалы), способные воздействовать в нужном направлении на кинетику электродных реакций. Кроме того, в состав летучих входят группы, (органические радикалы), придающие веществу необходимую летучесть Поэтому контактные ингибиторы это в основном неорганические соединения, а летучие соли аминов (алифатического, термоциклическогО И лического рядов) и слабых органических и неорганических  [c.564]

При погружении в электролит двух разнородных металлов, обладающих различными электродными потенциалами, в электролит будут переходить ионы металла г более низким электродным потенциалом. Если оба металла привести в контакт (при помощи проводника, например), то возникнет гальванический элемент, в котором избыточные электроны от металла с более низким электродным потенциалом (анода) будут перемещаться к металлу с более высоким электродным потенциалом (катоду). Цепь замкнется через электролит, где заряды будут передаваться ионами электролита. Таким образом, электрическое равновесие на аноде будет непрерывно нарушаться, и анод будет разрушаться, т. е. корродировать. Второй электрод (катод) разрушению не подвергается. На корродирующей поверхности металла имеются различные по своим свойствам участки, которые при соприкосновении с электролитохм выполняют роли анодов или катодов. Большей частью поверхность металла представляет собой многоэлектродный гальванический элемент, В зависимости от размеров анодных или катодных участков они образуют макрогальванические или микрогальва-нические элементы. Причины образования электрохимической неоднородности могут быть самые различные макро- и микровключения в сплаве, наличие границ зерен поры в окисной пленке, неравномерная деформация и др. По условиям протекания коррозия разделяется на следующие виды 1) газовая коррозия 2) коррозия в неэлектролитах (например, стали в бензине) 3) атмосферная коррозия 4) коррозия в электролитах (подразделяется в зависимости от характера коррозионной среды на кислотную, щелочную, солевую и т. п.) 5) грунтовая коррозия (например, ржавление трубопроводов) 6) структурная коррозия, обусловливается различными включениями в металле 7) электрокоррозия (возникает под действием блуждающих токов) 8) контактная коррозия, возникает при контакте в электролите металлов с разными электродными потенциалами 9) щелевая коррозия (возникает в узких щелях, например в резьбовых соединениях)  [c.152]

Скользящие контакты работают примерно в таких же условиях, что и разрывные, однако специфическим требованием для них является повышенная стойкость к механическому износу и трению. Скользящие контакты применяются в устройствах токосъема электротранспорта, в электрических машинах (между щетками и коллектором или контактными кольцами), в реостатах, ползунковых переключателях и других конструкциях. Значительный износ скользящих контактов возникает при сухом трении, если оба контакта изготовлены из одного материала или при неудачном выборе пар. Высокими качествами обладают контактные пары, составленные из металлического и графитсодержащего материалов. Для изготовления скользящих контактов широко применяются бронзы и латуни, отличающиеся высокой механической прочностью, упругостью и износостойкостью, антифрикционными свойствами, стойкостью к атмосферной коррозии.  [c.633]

Микробиологическая коррозия (далее биокоррозия) — это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов. Часто инициирование процессов электрохимической коррозии металлов связано с жизнедеятельностью бактерий и грибов. Биокоррозию можно рассматривать как самостоятельный вид коррозии наряду с такими, как морская, атмосферная, грунтовая, контактная и т. п. Однако чаще она протекает совместно о атмосферной или почвенной, в водных растворах или в неэлектролитах, инициирует и интенсиф г цирует их [9]. Идентифицирование биокоррозии, осо-бейно на ранних стадиях ее развития, возможно при проведении целенаправленных биохимических исследований.  [c.296]


Смотреть страницы где упоминается термин Контактная коррозия в атмосферных условиях : [c.52]    [c.59]    [c.177]    [c.21]   
Смотреть главы в:

Коррозия и защита металлов  -> Контактная коррозия в атмосферных условиях


Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.83 ]



ПОИСК



Атмосферная коррозия

Контактная коррозия

Контактные условия

Условия атмосферные



© 2025 Mash-xxl.info Реклама на сайте