Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные покрытия низколегированной

Гончаровский М.С., Коррозия и стойкость в морской воде труб из углеродистой стали и низколегированных сталей с защитными покрытиями. М.,  [c.103]

Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условиям постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода.  [c.444]


При большой толщине стенок парогенераторов применяют плакирование внутренних поверхностей различными коррозионноустойчивыми металлами (нержавеющие стали, никель, монель, титан и т. д.), осуществляемое совместной прокаткой тонких листов из этих металлов с листами из низколегированных или углеродистых котельных сталей. При сварке биметаллических листов сваривают сначала тонкий защитный слой, а затем основной металл. Защитное покрытие иногда целесообразно получать наплавкой защитного слоя на основной металл. При расчете парогенераторов на прочность защитный слой не учитывается.  [c.67]

Другие методы защиты от коррозии. Применение коррозионностойких сталей является самым надежным способом защиты от коррозии. Однако они значительно дороже обыкновенных углеродистых и низколегированных сталей. Кроме того, их применение не всегда возможно по техническим соображениям. Поэтому часто используют другие методы защиты металлических изделий от коррозии нанесение защитных покрытий и пленок (металлических и неметаллических), протекторную защиту, применение ингибиторов коррозии.  [c.173]

Перечисленные выше мероприятия по предотвращению водородного расслоения металла обеспечивают и надежную защиту от сероводородного растрескивания. Вместе с тем существует ряд мероприятий, предотвращающих растрескивание стали, но не гарантирующих отсутствие расслоения в сероводородных средах. Однако, поскольку расслоение представляет собой значительно менее опасный вид разрушения, чем растрескивание, то положительное значение этих мероприятий очевидно. Основными такими мероприятиями являются 1) применение стали с ограниченным пределом прочности и снижение рабочих (используемых при прочностных расчетах) напряжений в металле 2) использование низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию 3) термическая обработка элементов оборудования для снятия внутренних напряжений, возникших в процессе их изготовления 4) химико-технологическая обработка — нейтрализация среды. Кроме того, практика защиты от сероводородного растрескивания включает использование апробированных применительно к этому виду разрушения ингибиторов, стойких сплавов и защитных покрытий.  [c.98]

Двухслойные и многослойные металлы, состоящие из двух или нескольких различных металлов (сплавов), прочно соединенных между собой по всей плоскости соприкосновения, и представляющие монолитное целое. Машины и агрегаты, работающие в условиях повышенной коррозии, влажности, загрязненности атмосферы парами кислот, пылью и другими вредными веществами, особенно нуждаются в биметаллах, у которых основой являются малоуглеродистые или низколегированные стали, а в качестве плакирующего слоя используются коррозионностойкие металлы. Наши металлургические заводы освоили многие виды проката листа, ленты, проволоки с защитными покрытиями — луженые, хромированные, оцинкованные и др. Организовано производство труб, покрытых цинком, алюминием, кремнием. Изготовление биметаллов сталь — медь, сталь — латунь, сталь — бронза, сталь — никель и т. д. дает значительную экономию цветных металлов.  [c.178]


В настоящее время у нас и за рубежом проводятся широкие работы по замене химически стойких дефицитных конструкционных сталей низколегированными углеродистыми сталями с надежным защитным покрытием. Одним из вариантов защиты в отдельных, хорошо проверенных случаях, могут быть использованы лакокрасочные покрытия.  [c.301]

Из низколегированных незащищенных сталей сооружают конструкции на открытом воздухе, а также конструкции, защитное покрытие которых нельзя обновлять после начала эксплуатации, так как именно здесь в наибольшей степени проявляется коррозионная стойкость этих сталей. В настоящее время эти стали широко используют в таких сооружениях, как автодорожные мосты, а во многих странах они нашли применение и в строительстве зданий, где успешно используется их современный архитектурный внешний вид [18].  [c.21]

Защитные покрытия деталей из углеродистой и низколегированной сталей  [c.156]

Для ряда почв даже максимальный глубинный показатель скорости коррозии различных низколегированных сталей, как правило, находится в допустимых пределах ощибок опытов. Металлургический процесс изготовления стали не влияет на скорость ее коррозии в почвенных условиях [59, 60]. Среднюю, ориентировочную скорость коррозии железа и низколегированных сталей в ряде почв считают равной 0,2-0,4 мм/год. Эти данные относятся к коррозии незащищенных образцов или элементов конструкций небольшого размера, когда отсутствует ускоряющее влияние блуждающих токов. На протяженных объектах, например трубопроводах, скорость увеличения глубины местных коррозионных поражений может возрастать в десятки раз. При осуществлении защитных мероприятий (нанесение покрытий, электрохимическая защита конструкций и т. д.) скорость коррозии, напротив, может быть снижена в десятки раз.  [c.136]

При рабочих, температурах среды до 200 °С для защиты от коррозии сосудов из углеродистых и -низколегированных перлитных сталей применяют гуммирование (нанесение защитного слоя резины) или покрытия защитными лаками. Такие покрытия широко используют в оборудовании водоподготовительных установок. В процессе эксплуатации гуммированные или лаковые покрытия могут через определенное время отслаиваться или нарушаться другим образом. Тогда необходим их ремонт.  [c.116]

Для сварки низколегированных, особенно теплоустойчивых, сталей рекомендуется сварка в защитных газах (сварка в углекислом газе, аргоне, аргоне с добавкой углекислого газа). Для повышения производительности сварки и улучшения свойств сварного соединения применяют порошковые проволоки. При единичном производстве, сварке коротких швов и т. п. широко применяется ручная сварка покрытыми электродами.  [c.509]

Сплав МНЖ 5-1 сваривается с углеродистыми и низколегированными сталями электродами со стержнем из сплава МНЖ 5-1 с покрытием ЗТ, а при сварке под флюсом ОСЦ-45 или в защитных газах - электродной проволокой марки МНЖ 5-1.  [c.507]

Особую группу низколегированных сталей образуют атмосферостойкие стали. Использование их в металлоконструкциях позволяет обойтись без применения антикоррозионных покрытий. Атмосферостойкость обеспечивают малые количества Си, Р, Ni, Сг, Si и других элементов, модифицирующие слой ржавчины на поверхности металла. Образующиеся продукты коррозии имеют более высокую плотность и прочность, лучшее сцепление с поверхностью, чем антикоррозионные покрытия. Защитный слой образуется постепенно (через 1,5 - 3 года), после чего коррозия практически прекращается.  [c.253]

В заключение следует указать, что возможны и другие сочетания способов защиты оборудования от сероводородного растрескивания. Например 1) применение низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию, снижение величины рабочих напряжений, термическая обработка, прибавка к расчетной толщине стенки для компенсирования потери вследствие общей коррозии 2) нанесение защитных лакокрасочных покрытий, введение ингибиторов (в этом случае металл в дефектных или разрушившихся со временем участках покрытия будет защищен действием ингибиторов) 3) термическая обработка оборудования, нейтрализация среды и т. д.  [c.104]


Низколегированные стали повышенной прочности с содержанием углерода более 0,30% характеризуются склонностью к закалке и образованию трещин в зоне термического влияния. С повышением содержания углерода и скорости охлаждения околошовной зоны склонность сталей к закалке и образованию трещин увеличивается. Сварку таких сталей выполняют вручную покрытыми электродами, автоматами и полуавтоматами под флюсом, в среде защитных газов, а также электрошлаковым способом.  [c.176]

Кислород повышает стойкость швов против образования кристаллизационных трещин, вызываемых серой. Вместе с тем повышение содержания кислорода снижает ударную вязкость металла шва на углеродистых и низколегированных конструкционных сталях и уменьшает пластичность аустенитных швов. Кислород может попадать в металл шва из основного и дополнительного металлов, электродного покрытия, флюса, защитного газа или воздуха.  [c.234]

Пределы прочности и выносливости стали на воздухе не являются критериями поведения металла в условиях коррозионной усталости. В этих условиях может оказаться бесполезной замена одной стали другой, кроме специальной нержавеющей. Результаты многих исследований показывают, что химический состав углеродистых сталей мало влияет на их коррозионную усталость. Предел выносливости в коррозионной среде низколегированных сталей незначительно больше, чем углеродистых. Большой эффект дает применение жаропрочных и кислотостойких сталей. Применение наклепа в качестве предварительной операции перед защитными от коррозии покрытиями повышает выносливость и особенно в условиях коррозионного воздействия на деталь.  [c.408]

Проектируя морское сооружение из низколегированной стали, конструктор, при заданной прочности мог бы взять меньшую толщину стенок, чем при использовании углеродистой стали. Однако при более высокой скорости коррозии это может привести к ускоренному разрушению конструкции. Таким образом, при проектировании, в принципе, следовало бы предусматривать больший допуск на коррозию низколегированных сталей, чем для углеродистой стали. В то же время при использовании подходящего защитного покрытия более высокие прочностные характеристики низколегированных сталей позволяют добпться общего выигрыша. Катодную защиту в случае низколегированных сталей следует применять с большой осторожностью, поскольку эти сплавы нередко более склонны к водородному охрупчиванию, чем углеродистая сталь.  [c.57]

На основании многолетних натурных и лабораторных исследований установлено, что для преобладающего большинства подземных трубопроводов (за исключением проходящих в кислых почвах, в почвах, заселённых сульфатвос-станавливающими бактериями и бактериями, продукты жизнедеятельности которых коррозионно активны, а также для горячих трубопроводов) достаточная защита углеродистых и низколегированных сталей обеспечивается при -0,85 В по насыщенному медно-сульфатному электроду сравнения (МСЭ). Этот потенциал и принят в качестве минимального защитного потенциала. Значение максимального защитного потенциала для стали с защитным покрытием для любых сред ограничено -1,1 В по МСЭ. Для стали без защитного покрытия он не ограничивается [22].  [c.33]

Пентапласт используют в качестве коррозионностойкого конструкционного материала, а также защитного покрытия [33, с. 115 34]. Пентапластов ге покрытия можно наносить методом газопламенного напыления, окунанием в суспензию полимера или распылением ее с последующим спеканием порошка. Для защитных обкладок можно применять листовой пентапласт. Из него изготовляют оборудование, работающее при повышенных температурах в агрессивных средах фасонную и запорную арматуру, детали насосов, диафрагмы клапа-. нов, трубы, прокладки и пр. За рубелшм пентапласт известен под названием пентон и широко используется в химической промышленности для изготовления трубопроводов, вентиляционных каналов, дистилляционных колонн, скрубберов и реакторов. Слоем пептона толщиной 0,8—1,0 мм покрывают трубы из низколегированной стали такие трубы длиной 3,5 м и диаметром от 40 до 600 мм выпускает фирма Her ules Powder Со .  [c.170]

Большинство стальных конструкций, эксплуатируемых в атмосфере, покрыто ка-кими-либо защитными покрытиями. Если целостность такого покрытия постоянно поддерживается и ржавчина на стали не появляется, то, с точки зрения коррозии, нет никакого смысла использовать низколегированную сталь вместо обычной малоуглеродистой. Если же, наоборот, возможно повреждение защитного покрытия, то следует предусмотреть использование низколегированной стали. Более плотная пленка ржавчины, образующаяся на этих сталях, в меньшей степени вызывает отслаивание покрытия по соседству с прокорродировавшим участком, и скорость разрушения покрытия уменьшается. Некоторые исследователи сообщали о более высоком качестве и долговечности лакокрасочных покрытий на низколегированных сталях по сравнению с обычными сталями. Например, Копсон и Ларраби писали [24] Как полевые испытания, так и опыт эксплуатации показали, что лакокрасочные покрытия на высокопрочной низколегированной стали более надежны, чем на углеродистой или на медистой стали. Ржавчина, возникающая на повреждениях, в местах отсутствия покрытия или под лакокрасочной пленкой, у низколегированных сталей менее объемна. Благодаря меньшему объему ржавчины происходит меньшее растрескивание лакокрасочной пленки и, следовательно, на сталь попадает меньшее количество влаги, способствующей дальнейшей коррозии. В соответствии со сказанным, низколегированные стали можно с успехом использовать для таких целей, как сельскохозяйственное машиностроение. Покрытие на таких машинах нередко повреждается, и, кроме того, машины часто и подолгу остаются в поле под открытым небом.  [c.21]


Остальные сплавы этой группы по стойкости превосходят обычные низколегированные стали. Повышенная стойкость объясняется высоким содержанием в сплавах N1 или Со. Однако большинство магиитномягких сплавов на железной основе являются коррозионно нестойкими и применять их следует в герметических емкостях или с защитными покрытиями. Покрытие должно удовлетворять основному требованию — отсутствию химического взаимодействия или взаимной диффузии компонентов металла и покрытия.  [c.164]

В, остальное Ре, и другие по своей коррозионной стойкости близки к обычным низколегированным сталям. Поэтому они являются коррозионнонестойкими и их следует применять в закрытых объемах или с защитными покрытиями.  [c.164]

Для повышения адгезии н защитных свойств покрытий, низколегированных меха нвчески зачищен ных сталей  [c.167]

В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотериые металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии.  [c.171]

В связи с тем что растворимость диффузионно-подвижного водорода при нормальной температуре в низколегированных сталях мала, давление его в несплошностях жаропрочной перлитной стали может достигать 0,0981 10 МПа, что может приводить к образованию микротрещин (флокенов) в охрупченных участках сварного соединения. В связи с этим для сварки рекомендуют использовать низководородные сварочные материалы (электроды с основным покрытием, осушенные защитные газы, прокаленные флюсы).  [c.319]

Методы защиты металлов от газовой коррозии следующие жаростойкое легирование, нанесение покрытий и введение в газовую фазу компонентов, образующих на поверхности металла защитную пленку. Последний метод еще не нашел широкого применения. Жаростойкость железа мала, что исключает применение низколегированных углеродистых сталей в окислительных средах при Т > 500 С. Созданы высокожаростойкие стали, скорость окисления которых ниже, чем у Fe, в сотни и тысячи раз (окалиностойкие стали) 11].  [c.417]

При изготовлении изделий из низколегированных теплоустойчивых сталей наибольшее распространение находит ручная сварка покрытыми электродами и полуавтоматическая сварка в защитных газах. Работа конструкций при высоких температурах способствует протеканию диффузионных процессов. Поэтому для снижения интенсивности протекания этих процессов в сварном соединении стремятся максимально приблизить составы металла шва и основного. Для сварки хромомолибденовых сталей применяют электроды типа ЭМХ. Стали с малым содержанием углерода рекомендуется сваривать с предварительным подогревом до 200 °С, при большем содержании подогрев производят при 250 — 300 °С. Хромомолибденованадиевые стали сваривают электродами типа ЭХМФ с предварительным и сопутствующим подогревом до 300—350 °С и последующим высоким отпуском при 700—740 °С в течение 2 — 3 ч. При сварке листовой молибденовой стали малых толщин предвари-  [c.107]

Сварка н наплавка стальных деталей. Сварка и наплавка ручным способом ведется электродами с тонкими (0,10—0,25 мм на сторону) и толстыми (0,5—1,5 мм на сторону) покрытиями для защиты сварочного шва от вредных действий воздуха. Тонкие покрытия (чаще всего из 80—85% мела и 20—15 % жидкого стекла) способствуют устойчивости горения дуги и поэтому их называют стабилизирующими или ионизирующими покрытиями. Электроды с тонкими покрытиями используют для сварки малоответственных деталей, работающих при статических нагрузках. Толстые покрытия являются защитно-леги-рующими. В них входят газошлакообразующие, легирующие вещества и раскислители, способствующие формированию шва с повышенными механическими свойствами. Электроды с толстыми покрытиями применяют для сварки и наплавки ответственных частей из углеродистых и низколегированных сталей. Для наращивания изношенных поверхно стей стальных деталей используют наплавочные электроды, обеспечи вающие получение плотного слоя металла необходимой твердости [13]  [c.80]

При выполнении сварочных работ обезуглероженный КЧ (так называемый бело-сердечный или европейский КЧ) пригоден для сварки и пайки любыми методами без прел-варительной и последующей ТО. В отливках из этого материала пря толщине стенки до 8 мм содержание С снижается до 0,3%. В сердцевине при большей толщине стенок конечное содержание С остается более или менее значительным. При открытой дуговой сварке чугуна применяются электроды средней толщины с покрытиями типа TiOa или СаО. Дуговая сварка в атмосфере защитного газа позволяет использовать обычные электроды из низколегированных сталей, которые годятся также и для газосварки плавлением. Для отдельных узлов возможно применение стыковой сварки оплавлением.  [c.688]

Типы соединений. Материалы, формы и размеры деталей приборов, свариваемых контактной сваркой, отличаются большим разнообразием. Помимо углеродистых и низколегированных сталей в приборостроении приходится сваривать вольфрам, молибден, тантал, ниобий, титан, цирконий, ванадий, коррозионно-устойчивые и жаропрочные стали, медь, латунь, томпак, бериллиевую бронзу, алюминий и его сплавы, никель, платинит, ковар, нихром, феррохром, константан, хромель, копель, фехраль, манганин, золото, серебро, платина, иридий и другие металлы, используемые в приборостроении. Нередко приходится сваривать между собой металлы, резко отличающиеся по своим теплофизическим свойствам, металлы, покрытые плакирующим или защитным слоями (алюмированное железо, плакированный дюралюминий и др.)  [c.41]

В связи с тем, что растворимость диффузионно подвижного водорода при нормальной температуре в низколегированных сталях мала, а между его концентрацией и равновесным парциальным давлением в газовой фазе существует квадратичная зависимость, водород способен создавать в несплошностях металла значительные давления, что может приводить к образованию микротрещин (флокенов) в охрупченных участках сварного соединения. Так, при температуре 20 °С и концентрации водорода в металле 5 мл/ЮО г давление его в несплошностях жаропрочной перлитной стали может достигать 0,0981 10 МПа (10 ат). При 200 °С давление водорода в несплошностях снижается примерно на три порядка [3]. В связи с этим для сварки рекомендуется использовать низководородные сварочные материалы (электроды с основным покрытием, осушенные защитные газы, прокаленные флюсы).  [c.226]



Смотреть страницы где упоминается термин Защитные покрытия низколегированной : [c.262]    [c.271]    [c.830]    [c.163]    [c.155]    [c.63]    [c.167]    [c.244]   
Морская коррозия (1983) -- [ c.178 ]



ПОИСК



Защитно-декоративные покрытия деталей из углеродистой и низколегированной сталей. Табл

Защитные покрытия деталей из углеродистой и низколегированной сталей. Табл

Покрытие защитное



© 2025 Mash-xxl.info Реклама на сайте