Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные законы оптики

КРАТКОЕ ИСТОРИЧЕСКОЕ ВВЕДЕНИЕ 1. Основные законы оптики  [c.13]

Одним из основных законов оптики является закон прямолинейного распространения света в однородной среде, выполняющийся в тех случаях, когда по тем или иным причинам дифракционные эффекты несущественны. В нелинейной оптике указанный закон, вообще говоря, имеет дополнительные ограничения применимости. Пусть показатель преломления зависит от интенсивности света при достаточно больших ее значениях. Если освещенность в ноне-  [c.820]


В гл. 2 уже рассматривались основные законы оптики — законы отражения и преломления света. Пользуясь принципом Гюйгенса, мы дали формулировку законов и определили направление распространения отраженной п преломленной волн. Однако такие важные вопросы, как интенсивность и поляризация отраженной и преломленной волн, фазовые соотношения на границе раздела двух сред и некоторые другие, остались без рассмотрения. Собственно говоря, ответ на эти вопросы нельзя дать, поскольку принцип Гюйгенса позволяет определить только направление распространения фронта волны, ничего не говоря о других характеристиках воли.  [c.11]

В металлообрабатывающей промышленности оптические измерительные приборы нашли весьма широкое применение. Их используют для точных измерений размеров и формы деталей, штриховых мер, для исследований структуры и свойств металлов и в других случаях. Оптические методы измерения часто сочетаются с другими методами в ряде современных высокоточных измерительных приборов. Знание основных законов оптики необходимо при работе с оптическими приборами и особенно при юстировке и ремонте их.  [c.4]

Можно получить все основные законы геометрической оптики, переходя в уравнениях Максвелла к пределу Эта идея,  [c.166]

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествляется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распространения света. В таком виде принцип Гюйгенса является, по существу, принципом геометрической оптики и, строго говоря, может применяться лишь в условиях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравнению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через 01, во второй — через  [c.19]


Физические основы голографии. Голография обязана своим возникновением основным законам волновой оптики — законам интерференции и дифракции.  [c.10]

В первой половине книги кратко и систематически изложены общие основы метода. При этом авторы приводят минимальные нужные сведения о законах оптики, достаточно полно рассматривают устройство полярископов и необходимого дополнительного оборудования, приемы работы с ними, а также используемые зависимости между двойным лучепреломлением и напряжениями и способы проведения измерений. Они сообщают данные об упругих и вязкоупругих характеристиках используемых в США для изготовления моделей материалов, которые близки к отечественным, и анализируют закономерности их деформирования в связи с исследованиями напряжений при упругих деформациях, при изменениях температуры и действии импульсных нагрузок. Наряду с этим рассмотрены методы исследования напряжений на объемных моделях из материалов, позволяющих фиксировать получаемый при деформации оптический эффект. Весьма кратко изложены основные методы обработки данных поляризационно-оптических измерений. Для более быстрого и полного решения задачи также рекомендуется использо-  [c.5]

Так, в 1888—1889 гг. профессор Московского университета А. Г. Столетов провел большое число оригинальных опытов по изучению фотоэлектрического эффекта, в результате которых установил основные законы внешнего фотоэффекта и истинные причины этого явления [57]. Эти работы получили мировую известность и стали основополагающими в области изучения фотоэлектрических явлений. Крупный вклад в теоретическую оптику рассматриваемого периода внесли П. Н. Лебедев, Б. Б. Голицын, Т. П. Кравец, П. П. Лазарев, А. Ф. Иоффе и др.  [c.373]

Основные законы геометрической оптики  [c.42]

ОСНОВНЫЕ ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ Закон прямолинейного распространения света  [c.96]

Вопросы ВИДИМОСТИ предметов и прозрачности атмосферы имеют несомненно большое практическое значение. Основные законы, установленные в этой области физической оптики, учитываются в системе сигнализации на транспорте, нри производстве топографических и геофизических съемок, в работе воздушного и морского флота и т.д. Особую важность приобретает проблема видимости в военном деле. Несмотря на бурное развитие в последнее время радиолокационных методов обнаружения цели и изучения местности, визуальные наблюдения все же не потеряли своего значения. Они имеют значение для проверки правильности маршрута, прокладываемого по видимым ориентирам при движении самолета или корабля летчик, производящий посадку самолета, ориентируется на сигнальные огни аэродрома, так как на малых расстояниях радиолокаторы не дают правильных результатов.  [c.725]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]


Таковы основные и самые простые сведения о колебаниях, необходимые нам в последующем. Наука о колебаниях в настоящее время очень быстро развивается. Нет такой области в технике и в физике, где в той или иной мере не приходилось бы встречаться с колебательными процессами. Законы колебательных движений различного характера очень широко применяются инженером-механиком — конструктором разнообразных машин и движущихся механизмов, корабельным инженером — строителем морских и речных судов, авиаконструктором, создающим новые типы самолетов и моторов. Электротехника переменных токов и радиотехника полностью основаны на использовании колебательных процессов. С колебаниями приходится на каждом шагу встречаться ученым в геофизике, в оптике, механике, акустике, атомной физике, сейсмологии. Даже архитектор при проектировании здания или моста, казалось бы, устойчивого и неподвижного сооружения, не может обойтись без того, чтобы не применить или, во всяком случае, не учесть основных законов теории колебаний.  [c.28]

При более высоких температурах некоторую долю излучения составляют видимые, световые лучи, имеющие диапазон длин волн от 0,4 до 0,8 микрон. Основные законы излучения, распространения и поглощения энергии одинаковы для видимых и невидимых тепловых лучей. Поэтому многие термины и понятия, принятые в оптике, применяются и к тепловому излучению.  [c.130]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]

Основные законы геометрической оптики — это закон зеркального отражения и закон преломления Снеллиуса. Конечно, оба эти закона в действительности определяются волновой природой света и являются следствием конструктивной интерференции.  [c.447]

Вопросы истории, экспериментальное обоснование законов оптики, применения ее в тех е и других науках затронуты лишь постольку, поскольку это необходимо для уяснения основных явлений и принципов оптики. Из-за недостатка места даже описанию демонстраций в этом томе уделено меньше внимания, чей в предыдущих томах курса. Впрочем, демонстрации, осуществленные в Московском физико-техническом институте моими лекционными ассистентами Е. Н. Морозовым, М. И. Маклаковым, В. П. Молчановым, В. А. Кузнецовой, которым я глубоко благодарен, сыграли немалую роль при написании и этого тома курса физики.  [c.8]

Основные законы оптики были установлены, как мы видели, давно. Однако точка зрения на них менялась на пpoтялieнии последующих эпох.  [c.16]

Широко известны различные примеры проявления этих специфических свойств лазерного излучения. Так, например, в различных прозрачных средах возникает его самофокусировка, т. е. нарушается один из основных законов оптики — закон прямолинейного распространения света. Самофокусировка обусловлена большой интенсивностью лазерного излучения, под действием которого изменяется коэффициент преломления среды. Другой хорошо известный пример — возможность разделения изотопов ла-эерным излучением за счет высокой монохроматичности излучения и его селективного воздействия па состояния сверхтонкой структуры атомных спектров. Когерентность лазерного излучения и, в частности, его экстремально малая расходимость позволяют фокусировать излучение в кружок, диаигетр которого порядка длины волны излучения, т. е. порядка 1 мкм. При длительности лазерного импульса порядка фемтосекунд длина цуга, т. е. той области пространства, где локализовано электромагнитное поле вдоль направления его распространения, составляет величину порядка 10 см, т. е. величину порядка длины волны излучения Можно привести и другие примеры, столь же принципиально противоречащие привычным представлениям, сложившимся в до-лазерную эпоху, когда существовали лишь некогерентные источники излучения.  [c.6]

Пусть ультразвуковая волна распространяется в жидкости. Тогда в областях сжатия плотность жидкости возрастает, а в областях разрежения — уменьшается. Чем выше плотность жидкости, тем больше ее показатель преломления, характеризующий так называемую оптическую плотность. Таким образом, распространение ультразвуковой волны приводит к периодическому — в пространстве и во времени — изменению показателя преломления жидкости. Однородная жидкость под действием ультразвука становится оптически неоднородной. Один из основных законов оптики утверждает, что свет в однородной среде распространяется прямолинейно. В оптически неоднородной среде при распространении света в общем случае наблюдается явление дифракщш — отступление иг прямолинейности распространения света. Следовательно, если в эксперименте удастся обнаружить дифракцию света на оптических неоднородностях, обусловленных прохождением ультразвука через жидкость, тем самым будет доказано существование этих неоднородностей или, иными словами, непосредственно будет доказано, что ультразвуковая волна представляет собой сжатия и разрежения, распространяющиеся в жидкости.  [c.139]


Как известно, четыре основных закона геометрической оптики (законы прямолилейного распространения света, независимости световых пучков, отражения света от зеркальных поверхностей и преломления света на границе раздела двух прозрачных сред) были установлены на основе опытных данных еще задолго до выяснения истинной природы света. В связи с этим уместно привести некоторые исторические сведения.  [c.3]

Еще с древних времен известны некоторые основные законы геометрической оптики — прямолинейное распространение света в однородной среде, распространение через границу двух прозрачных сред с отличающимися показателями преломления (закон преломления света) и отражение от плоской зеркальной поверхности (закон отражения света). А как быть, если распространение света происходит в среде с псирерывно меняющимся показателем преломления Существует ли какая-нибудь общая закономерность, описывающая распространение света во всех вышеперечисленных случаях Ответ на подобный вопрос был дан французским математиком Ферма в середине XVII в.  [c.167]

Голография обязана своилч возникновением основным законам волновой оптики — законам интерференции и дифракции.  [c.205]

При рассмотрении оптики движущихся сред прежде всего необходимо выяснить, как отразится прямолинейное и равномерное движение среды, в которой происходят те или иные физические процессы, на описание их с помошью уравнений Ньютона и Максвелла. Иными словами, нужно выяснить, равноправны ли две инерциальные системы при описании оптических явлений в рамках классической физики. Напо.мним, что основной закон классической механики, а также его следствия имеют одинаковый вид во всех инерциальных системах отсчета, т. е. системах, движущихся равномерно и прямолинейно друг относительно друга. Это положение носит название принципа относительности Галилея.  [c.204]

Начиная с XVII в., наука о свете — оптика — привлекала внимание исследователей. Наиболее обычные явления (прямолинейное распространение, отражение, преломление), образующие нашу современную геометрическую оптику, были, естественно, изучены первыми. Многие ученые, в частности Декарт и Гюйгенс, работали над установлением законов этих явлений, а Ферма обобщил. их, выведя синтетический принцип, носящий его имя, который, будучи выражен в терминах современной математики, напоминает по форме принцип наименьшего действия. Гюйгенс склонялся к волновой теории света, но Ньютон, чувствуя в основных законах геометрической оптики глубокую аналогию с динамикой материальной точки, творцом которой он являлся, развил корпускулярную теорию света, так назы-  [c.641]

Взаимодействие излучения с прозрачными средами. Если исходить из основного предположения, что среда прозрачна, то, очевидно, надо под термином взаимодействие иметь в виду процесс распрострапения излучения в среде. Основные законы распространения света в прозрачных средах, справедливые в рамках линейной оптики, общеизвестны [1]. Это закон прямолинейного распространения света закон независимости световых пучков законы отражения и преломления на границе различных сред законы поглощения Бугера и Вера. В основе всех этих макроскопических ааконов лежит одна общая микроскопическая закономерность поляризация среды иод действием поля излучения описывается первым, линейным членом р = />< > = разложения индуцированной поляризации по степеням напряженности поля Е.  [c.15]

Из материала, обсуждавшегося выше, в лекциях 2 и 10, следует, что под действием сильного электромагнитного поля лазерного излучения вещество поляризуется, причем индуцированная поляризация нелинейно зависит от интенсивности возбуждающего излучения. Тот факт, что показатель преломлеппя вещества становится функцией иитеисивности излучения, очевидным образо.м изменяет основные законы онтики, если термин оптика в данном случае относить лишь к линейной оптике, в рамках которой показатель преломления не зависит от интенсивности излучения. Оптику, принимающую во внимание зависимость показателя преломления от интенсивности излучения, принято называть нелинейной оптикой.  [c.134]

Наконец, надо обратить внимание на очевидное, но принципиальное обстоятельство — наличие взаимосвязи волн па частотах о> и K(u, распространяющихся п среде. Это пример очевидного нарушения одного из основных законов лин-ейной оптикн — закона независимости световых пучков. Как уяге говорилось выше, в рамках нелинейной оптики этот закоп не имеет места.  [c.154]

Основные законы распространения света хорошо известны из курса оптики [1]. Это законы волновой линейной оптики, т. е. законы, определяющие распространение световых волп при малой интенсивности света. Из линейной оптики хорошо известно, что если и среде коэффициент преломления не постоянен, а, например, плавно изменяется, то прямолинейность распространения света нарушается, световые лучж и.чгибаютсн в направлении большего коэффициента преломления. Это так называемое явление оптической рефракции [1] ).  [c.165]

Ньютон (Newton ) Ясаак(1643-1727) — великий английский физик, математик, механик и астроном. В фундаментальном исследовании Математические начала натуральной философии (1687 г.)сформулирова ны основные законы классической механики. Этот труд определил направление всех работ по механике и небесной механике, выполненных в последующие два века. В основу ряда физических теорий легли многие положе-ния Оптики (1704 г.)Ньютона. Разработал (независимо от Лейбница) дифференциальное и интегральное исчисления. Открыл закон всемирного тяготения, явление дисперсии света, исследовал интерференцию и дифракцию, высказал гипотезу о сочетании корпускулярных и волновых представлений. Создал основы небесной механики. Его влияние на развитие мировой науки трудно переоценить. Фигура Ньютона, — писал А. Эйнштейн, — означает больше, чем это вытекает из его собственных заслуг, ибо самой судьбой он был поставлен на поворотном пункте умственного развития человечества,  [c.24]

Ф. п. установлен П. Ферма [1] и в первоначальной формулировке имел смысл наиболее общего закона распространения света. Действительно, из Ф. п. вытекают основные законы геометрич. оптики — закон отражения и закон преломления. В волновой теории света Ф. п. представляет собой следствие более общего принципа Гюйгенса и сохраняет силу только в тех случаях, когда длина световой волны может счптаться пренебрежимо малой величиной. Аналогия между Ф. п. и вариационными принципами механики сыграла большую роль в развитии современной динамики, с одной стороны, и теории оптич. инструментов — с другой. Эта же аналогия послужила одпой и отправных точек в открытии квантовой механики.  [c.296]

ОБРАТИМОСТИ ТЕОРЕМА (или принцип обратимости) хода лучей — одно из основных положений оптики, согласно к-рому пути световых лучей не меняются при изменении направления распространения света на прямо противоположное, Нринцип обратимости можно рассматривать как следствие закона прелом. 1ения света  [c.469]

Второй период охватывает время от конца 17-го до 20-х годов нашего века. И. Ньютон создает основу механики. Р. Гук (Англия) на опыте устанавливает пропорциональность мевду напряжениями и деф01ялациями в твердых телах - основной закон теории упругости. Х.Гюйгенс (Голландия) формулирует важный принцип - так называемый принцип Гюйгенса в волновом движении. С этого времени начи-назтся расцвет классической физики. Механика, гидродинамика и теория упругости, математическая физика, теория колебаний и волн, акустика и оптика развиваются в тесной взаимосвязи. В этот период акустика развивается как раздел механики. Создается общая теория механических колебаний, теория излучения и распространения упругих (звуковых) волн в различных средах, разрабатываются методы измерения характеристик звука (скорости звука, звукового давления в среде, импульса, энергии и потока знергии звуковых волн). Диапазон частот звуковых волн рася иряется и охватывает как область инфразвука, так и ультразвука (свыше 20 кГц).Выяо-  [c.5]


Геометрическое место точек, в которых аргумент 2я имеет одно и то же значение в момент I, называется поверхностью волны. Поверхность волны ортогональна световым лучам, испускаемым источником света это свойство остается в силе и после любого числа преломлений и отражений, как это вытекает из теоремы Малюса. Переход от волновой теории света к лучевой , т. е. к геометрической оптике, опирается на упомянутое соответствие между лучами и поверхностью волны. Для того чтобы совершить этот переход и вывести из теории распространения волн основные законы геометрической оптики (прямолинейность распространения света, законы отражения и преломления света и т. д.), а также вычислить распределение энергии в пятне рассеяния даваемом реальной оптической системой вместо идеального, геометрического изображения, нужно применить следующие положения принципа Гюйгеиса—Френеля.  [c.599]

Возможно, что немало физических явлений, кроме перечисленных, может быть призвано на помощь для решения рассматриваемого вопроса. Но необходимо учесть, что все эти явления могут играть только второстепенную, побочную роль основными для данного вопр оса являкяся, конечно, явления распространения световой энергии по законам оптики и фотометрии. Они — и только они — решают однозначно поставленную перед нами задачу и, как мы видели, не оставляют никакой надежды ца возможносты с помощью одних оптических систем, расположенных далеко от цели, добиться достаточно большого нагревания последней. Надо помнить, что эти выводы вытекают непосредственно из самых общих законов физики, например принципа сохранения энергии их достоверность по этой причине не уступает достоверности последнего, никем не оспоримого при нципа. Еще не пришло время для таких орудий оно придет только тогда, когда будут найдены совершенно новые источники света, в десятки и сотни тысяч раз мощнее современных.  [c.31]


Смотреть страницы где упоминается термин Основные законы оптики : [c.88]    [c.16]    [c.118]    [c.176]    [c.245]   
Смотреть главы в:

Оптика  -> Основные законы оптики



ПОИСК



Основные законы

Основные законы геометрической оптики

Основные положения и законы геометрической оптики

Основные понятия и законы геометрической оптики



© 2025 Mash-xxl.info Реклама на сайте