Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод расчета конструкций деформационны

Критерий несовершенств тесно связан с так называемым деформационным методом расчета конструкций, который некоторые авторы необоснованно предлагают взамен расчета на устойчивость.  [c.375]

Изложен метод расчета конструкций на длительную и неизотермическую прочность, основанный на использовании деформационно-кинетического критерия сопротивления разрушению с учетом зависимости деформаций от числа циклов нагружения. Распределение деформаций в наиболее напряженных зонах элементов получено на основе разработанного алгоритма и программ решения на ЭВМ соответствующих задач.  [c.272]


Вопросы усталости, и в первую очередь малоцикловой усталости, совершенствование методов испытания на усталость, обоснование деформационных критериев малоцикловой усталости, установление физической модели накопления повреждений при повторно-переменных нагрузках, кинетики развития усталостных трещин в тех или иных условиях нагружения, статистический аспект усталости, а также разработка инженерных методов расчета элементов конструкций на прочность при повторно-переменных напряжениях с учетом различных факторов (вида напряженного состояния, конструктивно-технологических особенностей, температуры, начальной напряженности и т. п.).  [c.664]

Основные механические закономерности сопротивления материалов малоцикловому и длительному циклическому нагружению, а также деформационно-кинетический критерий малоциклового и длительного циклического разрушения необходимы для решения соответствующих задач определения кинетики деформированных состояний в зонах концентрации и оценки долговечности на стадии образования трещины. Полученные данные о сопротивлении циклическому деформированию и разрушению использованы для расчета малоцикловой усталости циклически нагружаемых конструкций. Применительно к сварным трубам большого диаметра магистральных газо- и нефтепроводов, волнистым компенсаторам и металлорукавам на основе их испытаний разработаны и экспериментально обоснованы методы расчета малоцикловой усталости при нормальных и высоких температурах.  [c.275]

Методы расчета на прочность. Прежде чем приступить к расчету на прочность, следует выяснить характер внешних нагрузок (постоянная, циклическая и т. д.) и деформационную способность конструкционного материала (пластичный, с ограниченной пластичностью, хрупкий и т. д.). Основные элементы теплообменных аппаратов работают, как правило, в условиях спокойных нагрузок и выполняются из пластичных материалов. Количество тепло-смен за срок службы аппарата определяется в основном числом пусков — остановок (для большинства стационарных установок их частота невелика). В подобных случаях прочностные возможности конструкции правильнее оценивать по предельным нагрузкам, так как оценка прочности по максимальным напряжениям дает несколько завышенный результат. Однако метод предельных нагрузок применять нельзя, если нагрузка носит циклический характер или недопустимо (например, по коррозионным соображениям) появление пластических зон в металле, а также если искомой величиной является деформация. В этих случаях применяют упругий метод расчета.  [c.240]


Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Практическое значение работы состоит в разработке метода расчета, позволяющего определить расчетное сопротивление АО и осадку фундамента с учетом прочностных и деформационных свойств грунта и армирующих прослоек. Разработанные конструкции АО обеспечивают снижение стоимости и материалоемкости строительства. Результаты исследований были внедрены на нескольких объектах в г. Перми и Пермской области.  [c.4]

Хотя чаще всего целью конструктора является обеспечение большой долговечности, встречаются случаи, когда малоцикловая, или деформационная, усталость приобретает существенное значение. Например, исследования малоцикловой усталости и разработка соответствующих методов расчета представляют интерес для таких изделий, как снаряды и ракеты, поскольку их полная долговечность за все время эксплуатации может определяться лишь несколькими сотнями или тысячами циклов. В ряде других элементов конструкций, таких, как лопатки и роторы авиационных газовых турбин топливные элементы и баки ядерных реакторов, роторы и корпуса паровых турбин, изредка действующие большие механические нагрузки и температурные перепады способствуют накоплению значительных повреждений за несколько сотен или тысяч таких циклов с повышенными амплитудами в течение всего срока эксплуатации, так что методы расчета малоцикловой усталости тоже приобретают для них большое значение. Даже в тех случаях, когда действующие на машину или конструкцию нагрузки номинально малы, материал в вершинах опасных вырезов или выточек будет локально пластически деформироваться, т е. будет испытывать деформационную-  [c.377]

В этом разделе представлены основные уравнения и соотношения, которые используются в расчетах многослойных конструкций. На основе вариационных методов с использованием деформационных соотношений получены уравнения равновесия, дай анализ геометрических характеристик поверхностей и соотношений упругости анизотропного тела. Рассмотрены различные случаи упругой симметрии, показаны преобразования коэффициентов  [c.65]

За последние годы пластмассы находят все более и более широкое применение в качестве несущих элементов конструкций. Совершенно очевидно, что для проектирования изделий и конструкций из пластмасс необходимо знать их деформационные и прочностные свойства и владеть методами расчета на прочность. Так как ползучесть у высокополимеров проявляется обычно в большей степени, чем у низкомолекулярных твердых тел, то ее необходимо учитывать в прочностных расчетах.  [c.134]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов ковки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений 10 20%, в то время как упругие —0,3-0,5 %. Поэтому расчеты на прочность, основанные на допустимости только упругих деформаций, часто нецелесообразны технически и экономически.  [c.41]


Несмотря на значительные достижения теории пластичности и методов упругопластического расчета деталей при статических и циклических нагрузках [3, 4], методы расчета сложных конструкций при наличии в них зон упругопластических деформаций для более широкого их. применения в инженерной практике развиты недостаточно. Это относится не только к методам, требующим учета процессов сложного нагружения, деформационной анизотропии, трехмерности напряженного состояния и т.д. [51, но и к методам, основанным на теории малых упругопластических деформаций при наличии кинематических гипотез типа гипотез прямых нормалей в теории оболочек и пластин, принимаемых обычно в случае упругого деформирования для обширного класса задач [3,. 6—8].  [c.123]

В настоящее время конструирование и изготовление ответственных элементов конструкций из полимеров нередко ведется эмпирическими методами — путем последовательного усовершенствования опытных образцов используются также приближенные расчеты на основе теории упругости или теории ползучести, при этом нередко исходные гипотезы принимаются без достаточно экспериментального обоснования. Недостаточные знания деформационных и прочностных свойств полимерных материалов и отсутствие надежных методов расчета с учетом временной зависимости прочности в значительной степени сдерживают широкое применение их в технике.  [c.18]

Эксплуатационные нагрузки, действующие на элементы конструкций из полимерных материалов, нередко претерпевают изменения. Отсюда возникает необходимость в разработке методов расчета деформационных и прочностных свойств полимеров при переменных напряжениях. В настоящее время достаточно полно рассмотрены возможности описания механического поведения полимеров в условиях изменяющихся нагрузок при одноосном напряженном состоянии с помощью линейной теории вязкоупругости и различных вариантов нелинейной теории вязкоупругости [71, 138]. Наибольший практический интерес представляют случаи нагружения при сложном напряженном состоянии. Однако сведений о ползучести полимеров при сложном напряженном состоянии и переменных напряжениях, а также о методах теоретического описания опытных данных в научно-технической литературе крайне мало.  [c.146]

При расчетах по допускаемым напряжениям коэффициент запаса вычисляют как отношение предела текучести материала к максимальному напряжению. При обычно наблюдаемом неоднородном нагружении материала полых резино-текстильных изделий возникновение в какой-либо одной наиболее напряженной точке (или области) пластических деформаций еще не означает выхода из строя всей конструкции. Поэтому при расчетах по предельному состоянию определяют предельные нагрузки, при которых исчерпывается несущая способность (прочность или устойчивость) всего изделия, или же определяют деформацию (по прогибам или по складкообразованию), ведущую к выходу из строя конструкции или ее элемента, а коэффициент запаса вычисляют как отношение предельной нагрузки к действительной. Применение этого метода позволяет создавать более экономичные конструкции, поскольку здесь вскрываются дополнительные прочностные и деформационные ресурсы конструкций, не учитываемые в методе расчета по допускаемым напряжениям.  [c.118]

Нужно отметить, что анизотропные и вязкоупругие свойства стеклопластиков и пластмасс являются некоторым обобщением деформационных свойств известных материалов поэтому разработанные методы расчета имеют общий характер, и из них можно получить решения для конструкций из других материалов в упругой стадии их работы.  [c.4]

Специфика построения структурной модели определяет еще одно качество, отличающее ее от всех остальных моделей среды ее значение не исчерпывается задачами описания поведения материала, но оказывается исключительно важным и для задач моделирования поведения конструкций. Неоднородно деформируемое тело, материал которого обладает всем комплексом свойств деформационной анизотропии, может рассматриваться как идеально вязкая конструкция. Отсюда вытекают новые возможности для анализа общих законов деформационного поведения деталей машин и разработки на этой основе методов их расчета. Этой основной для теории неупругого деформируемого тела проблеме посвящены остальные главы книги.  [c.142]

Деформационные теории пластичности и ползучести. Расчет дисков в упругопластической области методом конечных элементов с применением итерационных процедур для решения нелинейных упругопластических задач не представляет принципиальных трудностей. Предложенные и развитые [13, 49] численные методы решения упругопластических задач, описанные в гл. 3, могут быть легко использованы и в случае конечно-элементного представления конструкции [14]. Принципиально близкие методы применяют в иностранных работах — метод начальных деформаций и др. [46].  [c.167]

Таким образом, как следует из рассмотренных выше данных, рассредоточенное образование микро- и макротрещин при циклическом упругопластическом деформировании может быть связано со структурной неоднородностью материала, обусловливающей, в свою очередь, неоднородность развития местных циклических деформаций на различных его участках, величины которых подчиняются нормальному закону распределения. Для учета этой структурной неоднородности материала при оценке циклической прочности образцов и элементов конструкций вводятся коэффициенты неоднородности циклической и односторонне накопленной деформаций, определяемые по статистическим параметрам распределения соответствующих величин или другим косвенным методом, в качестве которого, например, может служить метод большого числа измерений микротвердости. Использование указанных коэффициентов в критериальных зависимостях для расчета долговечности в области малоцикловой усталости вместе со средними значениями деформационных характеристик дает возможность определить число циклов до появления отдельных трещин, а также проследить за образованием магистральной трещины, приводящей к окончательному разрушению, что подтверждается и экспериментально.  [c.48]


Решение задачи о давлении грунта на подпорную стенку с учетом перемещений дает превышение бокового давления на стенку по сравнению с Кулоновым, отличаясь от давления по теории предельного равновесия на 20%. Метод деформационного расчета учитывает характер работы конструкции и основания.  [c.91]

Расчет зданий и сооружений на реальные сейсмические воздействия включает следующие этапы 1) выбор сейсмограммы или совокупности сейсмограмм в качестве расчетного сейсмического воздействия, при этом может быть изменена его интенсивность путем масштабирования 2) выбор и обоснование расчетной динамической модели сооружения 3) выбор расчетных зависимостей, характеризующих прочностные, деформационные й в некоторых случаях энергетические свойства элементов конструкций 4) разработку методов определения динамической (реакции расчетной модели на заданное воздействие 5) реализацию алгоритмов расчета на электронных вычислительных или аналоговых машинах  [c.67]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов човки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений  [c.250]

Усложнение геометрии исследуемых элементов конструкций по мере снижения их материалоемкости, нелинейное поведение материалов в зонах конструктивной неоднородности, в вершинах исходных технологических дефектов (трещин, пор, включений, подрезов и т. д.), особенно при длительных статических и циклических нагрузках в условиях повышенных температур, ведут наряду с применением традиционных в практике проектирования аналитических методов к существенному развитию и совершенствованию численных методов и самих критериев прочности и разрушения, ориентированных на использование ЭВМ [1]. При этом вместе с нормативными подходами д.ля оценки ма.лоцикловой прочности и долговечности по условным упругим напряжениям (равным произведению местных упругих или упругопластических деформаций на модуль упругости при соответствующей температуре [2]) разрабатываются уточненные методы расчетов, основанные на деформационных критериях разрушения поцикловой кинетики местных упругопластических деформаций и учитывающие температурно-временные эффекты, частоту нагружения, форму циклов [3—7].  [c.253]

Повышеиие характеристик прочности 00 2 и -1 предварительных пластических деформаций и старения в расчетах не учитывают, но изменение отношения Оо.г/ в принимается во внимание. Для малоуглеродистых и низколегированных сталей, склонных к деформационному старению (в случае предварительного пластического деформирования в диапазоне температур старения), Кп = 1,2. Если в конструкциях при неравномерных предварительных пластических деформациях возникают остаточные деформации (напряжения) во (Оо)> то их учет осуществляют в соответствии с рекомандациями данного метода расчета.  [c.132]

В теории пластичности изучаются законы, связываюгцие напряжения с унругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являюгцаяся основой современных расчетов конструкций, технологических процессов ковки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений 10-20 %, в то время как упругие — 0,3-0,5 %. Поэтому расчеты на прочность, основанные на допустимости только упругих деформаций, часто нецелесообразны технически и экономически. Учитывая пластические деформации, можно снизить концентрацию напряжений в конструкциях, повысить сопротивляемость тел ударным нагрузкам, определить запасы прочности, жесткости и устойчивости, тем самым обеспечить наиболее рациональное функционирование, надежность и безопасность конструкций.  [c.151]

Основные экспериментально установленные факты, выявившие характер влияния вибраций на механические свойства грунтов (в основном песчаных), сводятся к следуюш ему. Вибрация вызывает изменение-деформационных и прочностных свойств грунта (суш ественно возрастает-сжимаемость и резко падает сопротивление сдвигу). Кроме того, грунт приобретает свойства вязкой жидкости. Особенность рассматриваемых эффектов состоит в том, что они оказываются обусловленными только-ускорениями колебаний, и зависимость механических характеристик от ускорения носит четко выраженный пороговый характер — влияние-колебаний на механические характеристики (сжимаемость, коэффициент вибровязкости и т. д.) начинает сказываться лишь после достижения амплитудой вибрационного ускорения некоторого порогового значения. Проведенные эксперименты позволили выявить как сами пороговые значения ускорения, так и конкретный вид указанных зависимостей. (Н. А. Преображенская, 1958 И. А. Савченко, 1958 Д. Д. Баркан, 1959, и др.). Д. Д. Барканом, О. Я. Шехтер, О. А. Савиновым и другими с учетом полученных в опытах данных были разработаны методы теоретического решения задач о вибропогружении свай и иных конструкций в грунт и о глубинном и поверхностном уплотнении грунтов вибраторами. Полученные при этом результаты позволили разработать, рациональные инженерные методы расчета и проектирования как вибровозбудителей, так и самих процессов вибропогружения и виброуплотнения.,  [c.222]

Ставя вопрос об использовании численных методов для определения деформационных критериев D с целью последующего их использования для вычисления несущей способности элементов конструкций, содержащих трещины или концентраторы с р = О, необходимо обеспечить однозначность их определения разными исследователями. Разумеется, модель деформации упрочняющегося тела должна бьггь принята одинаковой, например по теории течения с изотропным упрочнением, как в случае определения D по результатам исггыгания образца, так и в случае расчета элемеггта конструкции на ггрочность.  [c.58]

Прогресс в теории неупругого деформирования, отмечаемый в последние два-три десятилетия, в существенной мере связан с актуальностью проблемы малоциклового разрушения для многих теплонапряженных и высоконагруженных конструкций современной техники. Необходимость расчета полей напряжений и деформаций при изменяющихся нагрузках и температурах потребовала переоценки простейших классических теорий пластичности и ползучести с точки зрения возможности отражения ими множества деформационных эффектов, которые при однократном нагружении не проявляются или признаются малосущественными. Оказалось, что разработка теории неупругого деформирования, удовлетворяющей новым требованиям, связана с немалыми принципиальными трудностями значительные затруднения возникали также при реализации поцикловых расчетов кинетики деформирования в связи с исключительно большой их трудоемкостью. На определенном этапе это предопределило преимущества приближенного подхода к оценке несущей способности конструкций, опирающегося на представления и методы предельного упругопластического анализа. Развитие, которое получил этот подход за последние десятилетия [16, 20], обеспечило ему довольно высокую эффективность при решении прикладных задач. С другой стороны, полученные в рамках теории приспособляемости (и ее дальнейшего обобщения — теории стационарных циклических состояний) четкие представления о различных типах поведения конструкции способствовали более глубокому пониманию многих характерных особенностей повторно-переменного деформирования.  [c.7]


Расчет напршкенного и деформированного состояния элементов конструкций методом последовательных нагружений с учетом деформаций ползучести по теории старения производится аналогично расчету пластических деформаций по деформационной теории пластичности. Отличие состоит лишь в том, что вместо кривой упруго-пластического деформирования в расчете нссоль-  [c.34]

Для элементов машин и конструкций в экстремальных условиях нагружения (в зонах концентрации, в местах действия высоких температ рны5в и остаточных напряжений, в окрестности трещин) традиционно применяемые в инженерной практике расчеты прочности, основанные на определении номинальных и местных напряжений (методы сопротивления материалов), оказываются недостаточными и в целом ряде случаев неправол1ерньдаи-Поэтому запасы прочности и долговечности в рамках поверочных расчетов устанавливают на базе деформационных критериев разрушения, т. е. по предельным нагрузкам, местным упругопластическим деформациям, коэффициентам интенсивности напряжений и деформаций по размерам дефектов типа трещин.  [c.6]

При определенных классах нагружений соотнонге-ния связи между напряжениями и приращениями нластич. деформаций для упрочняющегося материала могут быть проинтегрированы. В этом случае имеют место соотношения деформационной П. т., среди которых важное место принадлежит теории малых упруго-пластич. деформаций, справедливой при про-стг.1Х нагружениях (напряжения и деформации возрастают пропорционально одному параметру), а также ори нагружениях, достаточно близких к простым. Сравнительная простота соотношений теории малых упруго-пластич. деформаций позволила получить ряд важных результатов при расчетах на прочность и устойчивость деталей конструкций (труб, стержней, пластин, оболочек), дать методы определения динамич. напряжений при продольном ударе стержней и т. д.  [c.38]

Один из наиболее простых расчетных приемов определения перемещений сварных конструкций состоит в выделении двух самостоятельных этапов расчета. На первом находят деформации и перемещения в зоне сварных соединений — эту часть называют термомеханической частью задачи, а на втором методами сопротивления материалов или теории упругости определяют перемещения в конструкции, используя результаты, полученные на первом этапе. Эту часть называют де юрмационной частью задачи. Удобство такого приема состоит в том, что одни и те же результаты термомеханической части задачи, полученные один раз расчетным или экспериментальным путем, могут затем многократно использоваться при решении деформационных задач для самых разнообразных видов конструкций.  [c.205]


Смотреть страницы где упоминается термин Метод расчета конструкций деформационны : [c.10]    [c.198]   
Прикладная механика твердого деформируемого тела Том 3 (1981) -- [ c.375 ]



ПОИСК



39 — Конструкция 31—32 — Методы

Деформационные швы



© 2025 Mash-xxl.info Реклама на сайте