Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние материала в локальной области

В первом томе содержится информация, составляющая фундамент механики твердого деформируемого тела. Подробно обсуждаются свойства конструкционных материалов, анализ напряженно-деформированного состояния в точке сплошной среды и физические уравнения в реологическом аспекте. Уделено значительное внимание проблеме предельного состояния материала в локальной области. За-  [c.35]

Какие существуют типы предельных состояний материала в локальной области  [c.49]


Первое из них состоит в усилении органической связи вопросов теории сплошных сред с традиционными вопросами собственно курса сопротивления материалов. С этой целью во втором отделе излагаются теория напряжений (глава V), теория деформаций (глава VI), закон Гука и элементы реологии (глава УП) и условия пластичности (глава VHI — предельное состояние материала в локальной области) в объеме, достаточном для дальнейшего изложения механики сплошных твердых деформируемых тел. К тому, что обычно дается по этим вопросам в курсе сопротивления материалов, пришлось добавить очень немного для того, чтобы иметь возможность в дальнейшем к ним уже не возвращаться.  [c.12]

ПРЕДЕЛЬНОЕ СОСТОЯНИЕ МАТЕРИАЛА В ЛОКАЛЬНОЙ ОБЛАСТИ  [c.520]

Если предельным состоянием материала в локальной области является хрупкое разрушение, то в ряде случаев это предельное состояние может представить опасность для всей конструкции, ибо разрушение материала в малой области может явиться началом развития конечной по размеру области разрушения. В таких случаях вполне уместно использование расчета по допускаемым напряжениям, в котором считается, что опасная ситуация для конструкции в целом заключается в возникновении опасной для материала ситуации хотя бы в одной или нескольких ее точках.  [c.523]

Тот факт, что в качестве предельного состояния материала в локальной области принята текучесть, нуждается в пояснении.  [c.523]

Если реализован пункт 3, то в определенном смысле уровень результата теории аналогичен уровню феноменологических теорий прочности — теория позволяет судить лишь о надежности работы материала в локальной области, выбранной из бесконечного множества таких областей в теле самим исследователем, или о надежности работы материала в однородно напряженном теле, в котором предельное состояние наступает сразу во всей области.  [c.595]

Рис. 1. График локального механического состояния материала в момент области А F Рис. 1. График локального <a href="/info/134854">механического состояния</a> материала в момент области А F
О путях оценки сопротивляемости материала возникновению в нем предельного состояния в локальной области. Возникает вопрос как же судить о сопротивляемости материала появлению текучести или разрушению, в случае, если он находится в условиях пространственного напряженного состояния  [c.521]


Если локальную область, в которой материал доведен до состояния текучести, окружает материал, находящийся еще в упругом состоянии, то фактически текучести как таковой произойти не может в силу стеснения больших деформаций сопротивлением окружающего материала. Утверждение о возникновении текучести в локальной области фактически является утверждением о потенциальной возможности пластических деформаций, реализация которых мыслима лишь по снятии стеснения ). Именно поэтому расчет по допускаемым напряжениям в случае пластического состояния материала не является совершенным, так как предельное состояние материала в окрестности точки не представляет опасности в целом для конструкции. Более совершенным является расчет по разрушающим (или, иначе, по допускаемым) нагрузкам, а еще более совершенным — расчет по предельным состояниям.  [c.523]

Вводные замечания,, В предыдущих параграфах настоящей главы были рассмотрены два направления в учении о прочности материала феноменологические теории предельного состояния (в том числе разрушения) в локальной области и теории макротрещин (последнему из них посвящен 8.9). Настоящий параграф содержит материал о третьем направлении в этом учении — направлении, в котором строятся так называемые континуальные (тоже феноменологические) теории тех или иных дефектов ), например, континуальная теория трещин ), континуальная теория дислокаций ) и т. п. Во всех этих теориях не производится наблюдения за отдельным дефектом, например, за отдельной трещиной, но создается такая модель сплошной однородной среды,  [c.579]

Поведение материала в опасной области в условиях циклически изменяющегося напряженно-деформированного состояния можно изучить, исследуя в лабораторных условиях гладкий образец. Соответствующие условия проведения лабораторных испытаний определяются на основе анализа расчетными или экспериментальными методами изменения локальной зависимости напряжений от деформаций при циклическом нагружении в опасной точке конструкции. Таким образом, необходимо располагать методами определения характеристик напряженно-деформированного состояния с  [c.274]

Реальное тело не обладает абсолютной жесткостью. Поверхность тела, на которую действует давление продуктов взрыва, деформируется, что оказывает влияние на интенсивность импульсивных нагрузок. Реакция тела на действие нагрузок сводится к следующему 1) вблизи поверхности материал тела под действием высокого давления продуктов взрыва вначале сильно сжимается 2) при внезапном уменьшении давления поверхность тела возвращается в ненапряженное состояние, хотя материал может получить значительную пластическую деформацию 3) в теле возникают возмущений, вызванные действующим давлением продуктов взрыва, длительность действия которых мала, так что длина импульса в материале невелика, однако возмущения имеют вид волны с крутым фронтом. Распространение этих волн проходит с высокими скоростями, т. е. в этом случае, очевидно, зарождаются ударные волны. При большой интенсивности возмущений тело может разрушаться либо в отдельных локальных областях, либо по всему объему.  [c.17]

Главная проблема корректного моделирования поведения композиционного материала состоит в адекватном представлении сложных граничных условий, получающихся при выделении локальной области для исследования ее напряженно-деформированного состояния, например при выделении изолированного волокна с непосредственно окружающим его материалом матрицы. На поверхности раздела двух материалов необходимо поставить граничные условия в напряжениях и (или) в перемещениях так, чтобы они верно отражали реальные физические условия на этой поверхности. Однако из-за многократного взаимодействия волокон перемещения и напряжения внутри композита распределены чрезвычайно сложным образом, так что значения напряжений и перемещений на поверхностях раздела, являющиеся граничными условиями задачи, вообще говоря, неизвестны.  [c.213]

Данные исследования однослойных витых оболочек, изготовленных из материала ЭПСА, показали совпадение экспериментальных результатов с расчетными, проведенными по теории тонких оболочек. Резкие изменения напряженного состояния наблюдаются в области продольного сварного шва (места склейки слоев модели внахлест), носят локальный характер и зависят от угла раствора нахлеста.  [c.279]


Учитывая эти изменения, необходимо внимательно пересмотреть уравнения состояния с тем, чтобы они правильно учитывали новые характеристики, описывающие поведение материала. Все это означает, что помимо нелинейности материала в виде пластичности необходимо учитывать геометрическую нелинейность. Скорее всего, геометрическая нелинейность ограничивается только областью в вершине трещины, поэтому оставшаяся часть тела может быть описана с помощью теории, основанной на малых деформациях. Тем не менее для адекватного моделирования трещины необходимо учитывать локально большие деформации  [c.332]

Заданные прочность, надежность, долговечность достигаются формированием определенного структурного состояния. Оно должно сочетать эффективное торможение дислокаций с их равномерным распределением в объеме материала либо, что особенно благоприятно, допускать определенную подвижность скапливающихся у барьеров дислокаций. Эти требования исходят из того, что хрупкое разрушение инициируют скопления дислокаций критической плотности, например, у непроницаемых барьеров, где возникают опасные локальные напряжения. Их релаксация идет двумя путями 1) образованием зародыша хрупкой трещины 2) прорывом и эстафетной передачей дислокаций в смежные области. Второй путь — путь пластической релаксации локальных напряжений — возможен при наличии полупроницаемых барьеров. Их роль, в частности, выполняют малоугловые границы — границы субзерен.  [c.233]

Разрушающая нагрузка определяется напряженно-деформированным состоянием всей детали. Локальный критерий ) = О (т. е. критическое состояние определяется узкой зоной в устье трещины), как показывают эксперименты, все же выполняется (по причинам, о которых будет сказано в следующем Пункте), если области тела, охваченные пластическим течением, Относительно невелики. Обозначим соответствующую этому критерию нагрузку В частности, для трещины нормального Ч Рыва при а, = О отсюда следует известный критерий разрушения — механическая характеристика материала, на-  [c.241]

Тонкостенные оболочечные конструкции во многих отраслях машиностроения относятся к сложным системам, основные качественные характеристики которых связаны с решением прочностных проблем. Упругий расчет оболочечных конструкций при контактных взаимодействиях и локальных нагрузках является необходимым при решении широкого класса задач прочности. Однако для современных машиностроительных конструкций, работающих в сложных режимах нагружения, исследование напряженно-деформированного состояния и в особенности несущей способности должно быть связано с учетом неупругой области деформирования материала. Роль физически нелинейных теорий при разработке эффективных методов расчета прочности тонкостенных конструкций значительно возросла.  [c.222]

Кратном повторении. Простейшее представление о причине этого можно составить, если учесть, что напряжение вводилось как результат осреднения внутренних усилий, распределенных неравномерно и беспорядочно между различными микрообъемами. При построении критериев прочности при статических однократных нагрузках по данным опытов эта микронеоднородность учитывается фактическим поведением материала при испытаниях. Но данные этих опытов и построенные по ним критерии прочности нельзя автоматически переносить на случаи повторяющихся нагрузок. Действительно, даже в случае деформирования тела в пределах упругости, когда повторное воспроизведение нагрузок приводит к повторяющейся картине напряженного и деформированного состояний, как статистически определенных характеристик, в малых областях тела, особенно при наличии дефектов внутри или на граничной поверхности тела (трещины, надрезы, инородные включения и т. п.), могут возникать локальные пластические деформации или микроразрушения, так что в этих областях локальное напряженное и деформированное состояние при повторном воспроизведении нагрузки будет уже другим. Накопление этих видоизменений в малых областях при повторении нагрузок может привести к развитию трещины разрушения. Отсюда ясна возможность так называемой усталости материала при периодических нагрузках.  [c.289]

Об использовании критерия предельного состояния материала в локальной области. Известны два типа предельных состояний материала —хрупксе разрушение и текучесть.  [c.523]

Первая теория (теория максимальных нормальных напря жений). Первой теорией предельного состояния материала в локальной области принято называть теорию, в основу которой положена следующая гипотеза предельное состояние материала, независимо от того, находится ли он в линейном или сложном (плоском или пространственном) напряженном состоянии, наступает при достижении максимальным нормальным напряжением в окрестности рассматриваемой точки тела предельной (опасной) величины а .  [c.524]

Условия невозникновения предельного состояния материала в локальной области в балках при поперечном изгибе  [c.185]

В малой области F x, у) сечения случайные вариации разрушающих напряжений квантов описываются законом плотности вероятности poia-pu х, у). Математическое ожидание деформаций квантов принимается равным деформации г х,у) сплошного однородного тела. Локальное механиче ское состояние материала в малой области Af полностью и наглядно характеризуется комплексным графиком (рис. 1) Ро—а—е — составленным из кривых а (е) —растяжения са-  [c.25]

Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.  [c.13]


Зависимость сопротивляемости материала возникновенин> предельного состояния в локальной области от напряженного состояния и от истории нагружения. До сих пор при рассмотрении сопротивляемости материала разрушению или возникновению текучести имелась в виду работа его в условиях линейного напряженного состояния, изучаемого в опытах с образцами, подвергнутыми растяжению или сжатию, напряженное состояние в которых однородно. Вместе с тем в конструкциях материалу приходится работать и в иных, гораздо более сложных условиях — напряженное состояние материала может быть не линейным, а плоским или даже пространственным.  [c.520]

Как уже было показано в главе П1 и как это отмечалось и в настоящей главе, существуют два подхода к проблеме оценки прочности — расчет по допускаемым напряжениям и расчет по предельным состояниям. Материал настоящей главы непосредственно относится главным образом к первому подхс цу для второго он дает условия текучести, которые при помощи аппарата теории пластичности (см. главу X), могут позволить оценивать предельное состояние конструкции в целом. Кроме того, рассматривались элементы глобального хрупкого разрушения в результате накопления дефектов. Такая теория занимает положение, симметричное теории пластичности, но предельные состояния в локальной области, используемые в ней, это предельные состояния хрупкого разрушения материала в окрестности точки. И теория пластичности (см. главу X) и теория хрупкого глобального разрушения вследствие накопления дефектов приводят решение проблемы к краевой задаче и результат зависит от истории всего процесса нагружения.  [c.603]

Пример 12.11. Подбор сечения и проверка прочности балки. Подобрать сечение и произвести проверку невозникновения предельного состояния в локальной области в консольной балке, изображенной вместе с нагрузкой и эпюрами усилий на рис. 12.58, д, где указаны и все размеры. Материал балки — сталь (Ст. 3) с допускаемым напряжением [а] =1600 к.Г1см .  [c.188]

Лазеры проявляют тенденцию к самопульсаииям на частотах от 200 МГц до 2 ГГц. Это явление необходимо отличать от затухающих колебаний или звона, появляющегося в начале лазерного импульса (см. следующий параграф). Пульсации часто появляются во время испытания на срок службы и их связывают с дефектами, которые возникают вследствие избыточного поглощения в локальных областях оптического канала. Они вызывают уменьшение населенности возбужденных состояний, что в свою очередь приводит к уменьшению мощности до тех пор, пока общее усиление опять не достигнет лазерного порогя Затем цикл повторяется. Это похоже на процесс регулярной автомоду ляции добротности. Улучшение контроля качества материала снижает количество таких дефектов и, следовательно, вероятность пульсаций .  [c.299]

При переходе в пластическую область в реальных кристаллических телах возникают локальные пластические деформации, поэтому при анализе состояния вещества используют эффективный коэффициент Пуассона который изменяется вследствие как пластической деформации, так и накопления повреждений. Эффект поперечных деформаций отражает основное внутреннее свойство материала - самовоспроизвольно восстанавливать форму в результате ее изменения при внешнем взаимодействии, т.е. сохранять объем при деформации неизменным [19]. При исчерпании этой возможности, в локальном объеме  [c.100]

Естественное развитие линейной механики разрушения состоит в приложении основных ее -концепций к задачам кинетики роста трещин во времени или в зависимости от числа циклов, если речь идет об усталостном разрушении. Важно при этом, что кинетика, линейная или нелинейная, предполагается чисто локальной, все процессы разрушения любой природы предполагаются происходящими в концевой области весьма малых размеров, вне этой области материал упруг. Тогда в любых кинетических уравнениях единственным представителем напряженного состояния будет коэффициент интенсивности. Разделы книг, носвященные усталостному разрушению, например, строятся именно таким способом.  [c.12]

В Л. 228, 229] выдвинута гидродинамическая теория псевдоожи-женного слоя. По этой теории псевдоожижение — это превращение упруго вязкой среды (какой является сыпучий материал) в среду, наделенную только вязкими свойствами, когда нормальные напряжения в слое становятся равными нулю. Идеально однородное лсевдо-ожиженное состояние образуется в том случае, когда рыхлая структура слоя является более устойчивой . При неустойчивости имеются локальные дисбалансы объемных и поверхностных сил а псевдоожиженном слое. Это приводит к временному образованию внутренних (нормальных) напряжений и разрывам слоя — образованию каверн , т. е. областей относительно свободных от твердых частиц. В псевдоожиженном слое эти каверны можно рассматривать как пузыри. Но аналогию их с пузырями газа в жидкости автор [Л. 228] справедливо считает весьма условной.  [c.11]

При анализе условий нагружения следует подвергать тщательной оценке термические условия работы оборудования характер температурного градиента в сечении, теплопередачу, термическое расширение. а также длительность термических нагрузок и их повторяемость. Может оказаться, что локальная концентрация температуры в поверхностном слое настолько высока, что уже в тонком слое она приводит к росту зерна или даже расплавлению материала. В случае деталей больших сечений, нельзя забывать о внутренних напряжениях. Подробного анализа требует геометрическая ( рма работающей детали, состояние рабочих поверхностей, а также наличие геометрических и структурных микронадрезов в приповерхностной области.  [c.68]

Одной из наиболее информативных характеристик трещино-стойкости нелинейной механики разрушения является коэффициент интенсивности деформаций в упругопластической области К1е [1, 65-67], применимый в условиях статического и циклического нагружения. Его использование в инженерных расчетах [1, 68-71] позволяет определять запасы прочности и долговечности по предельным нагрузкам, локальным упругоплаетическим деформациям, размерам трещин и числам циклов нагружения. При этом основа расчетов — традиционные характеристики механических свойств (пределы текучести и прочности, относительные удлинение и поперечное сужение, показатель деформационного упрочнения и др.). Учитывается также влияние уровня номинальных напряжений, изменение параметров деформационного упрочнения, степени объемности напряженного состояния и предельной пластичности материала.  [c.53]

В зависимости оТ условий нагружения каждая точка на ниспаг дающей ветви диаграммы деформирования может соответствовать моменту разрушения [107, 143. Деформирование данного рода осуществимо лишь для локального объекта в составе механической системы с необходимыми свойствами. В противном случае происходит неравновесное накопление повреждений и макроразрушение как результат потери устойчивости процесса деформирования на закрити-ческой стадии. В области разупрочнения возможно также возникновение локализации деформации в виде полос сдвига [184, 221, 328, 360, 365]. Ниспадающая ветвь наблюдается тогда, когда есть механизмы и условия постепенной диссипации упругой энергии. Таким образом, рассматриваемые состояния материала можно назвать условно реализуемыми.  [c.25]


При нагружении композита наблюдаются последовательно сменяющие друг друга стадии структурного разрушения. Пока степень повреждений не превышает 7% процесс структурного разрушения npКорреляционная функция, построенная для равновесного состояния, соответствующего точке / на рис. 7.8а, локальна, затухает на расстоянии 6 i. Значительное ослабление взаимного влияния при увеличении расстояния является признаком ближнего порядка во взаимодействии повреждений. Коэффициент корреляции снижается до 0,2 на расстоянии 2 f . Малое смещение а в пределах 10% корреляционных функций в положительную область обусловлено некоторой несимметрией относительно ортогональных осей формы структурного элемента, несмотря на то, что схема дискретизации макроскопически квазиизотропного композита выбиралась из условия минимального разброса эффективных модулей Юнга в трех взаимно ортогональных направлениях. Например, в случае зернистого композита с двумя изотропными компонентами модули Юнга которых равны 10 МПа и 10 МПа, при одинаковый коэ ициентах Пуассона 0,25 и совпадающих объемных долях ука занное отличие в эффективных модулях не превышало 2%.  [c.142]

Специфические условия деформации. и разрушения. В литературе известны многочисленные случаи специфического характера деформации и разрушеиия твердых тел, которые не могут быть описаны существующими теориями деформируемого твердого тела. К ним относятся взрывное нагружение, сверхскоростное резание, усталостное разрушение при зиаконеременном нагружении, тектонические процессы в литосфере и др. Характерные особенности подобной деформации гидродинамический характер (во всем объеме или локальных областях), сильная локализация скольжения, расслоение деформируемого материала па отдельные ламели, эффекты экструзии — интрузии. Есть основание полагать, что ьсе перечисленные особенности связаны с возникновением в материале в специфических условиях нагружения протяженных областей атом-вакансионных состояний в кристаллической решетке с сильными кооперативными смещениями.  [c.24]

Основная цель боковых надрезов — это устранение чрезмерного влияния поверхностей. Простое объяснение их влияния состоит в следующем повышение напряжений у верщины боковых надрезов увеличивает К в этой области, а трехос-ность напряженного состояния, возникающая в результате наличия боковых надрезов, может привести к локальному снижению сопротивления разрушению. При соответствующей конфигурации боковых надрезов материал у поверхности может разрушаться почти с той же легкостью, как и в центральной части образца. Слово легкость здесь не имеет точного определения тем не менее имеется возможность оценить эффективность боковых надрезов посредством исследования формы фронта остановившейся трещины.  [c.213]

I 5 а I 1 = и, в которой на левой стороне характеристика микрообъема 5 вблизи корня дефекта, и на правой стороне напряжение и макрообъем с дефектом длиной /. Фактор интенсивности напряжения вытекает именно из этого определения и для лпшимальиой величины зона пластической дефор.мацин соответствует наибольшему напряжению. Так как одновременно так же определяет освобождаемую энергию упругой напряженности в области трещины, то является очевидным, что разделение материала в корне дефекта должно зависеть от предельного значения фактора интенсивности напряжения иУстановление объема и изменений свойств пластической зоны до предельного состояния по прочности в настояигее время осуществляется изменением раскрытия трещины специальными датчиками. Таким образом возможно установить локальные качества материала, определяющие предельное состояние прочности реальных тел с дефектами. Было показано, что величина пропорциональна Критическое значение фактора интенсивности напряжения поэтому является важной характеристикой материала. Минимальное ее значение отличается от средней величины и зависит от скорости нарастания трещины. Тем не менее используется упрощение для линейной трактовки механики хрупкого разрушения и предполагается, что эта величина постоянная. Влияние различных препятствий краевых условий и влияние всего напряженного объема нельзя объяснить в требуемых масштабах на основании этой механики разрушения и будущее принадлежит теории, основанной на анализе распространения эластических волн в теле, сопровождающем развитие хрупкой трещины. Динамически параметры существующей экспериментальной техникой пока не исследуются.  [c.457]


Смотреть страницы где упоминается термин Состояние материала в локальной области : [c.2]    [c.522]    [c.529]    [c.830]    [c.350]    [c.326]    [c.67]    [c.10]    [c.118]    [c.56]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.120 , c.122 , c.122 , c.124 , c.124 , c.192 , c.192 , c.209 , c.209 , c.259 , c.259 , c.520 , c.520 , c.522 , c.522 , c.524 , c.524 , c.526 , c.526 , c.529 , c.529 , c.531 , c.531 , c.532 , c.532 , c.536 , c.536 , c.537 , c.537 , c.539 , c.539 , c.540 , c.540 , c.548 , c.562 , c.573 , c.745 ]



ПОИСК



Г локальный

К локальности

Предельное состояние материала в локальной области

Состояние материала

Теория предельного состояния материала в локальной области (теория прочности

Условия невозникновения предельного состояния материала в локальной области в балках при поперечном изгибе



© 2025 Mash-xxl.info Реклама на сайте