Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние напряженное типа сжатия

Окружность 2 —крайняя правая радиус ее является радиусом кривизны огибающего эллипса в точке /Са, а вершина располагается в крайней правой точке (точка С) участка AB вспомогательного эллипса. Окружность, 3— средняя окружность, она имеет наибольший радиус и касается огибающего эллипса в наивысшей его точке —точке В, а вершина этой окружности располагается в наивысшей точке (точка В) участка AB вспомогательного эллипса. Наконец, окружность 4 —это окружность общего положения (текущая окружность рассматриваемого семейства), она касается огибающего эллипса в точке М и имеет вершину в точке N, лежащей на участке AB вспомогательного эллипса. Окружности общего расположения всплошную заполняют заштрихованную на рис. 5.32, г область. Каждой точке участка AB вспомогательного эллипса соответствует определенное значение коэффициента Ца, а следовательно, и определенный тип напряженного состояния. При л = 1 имеем тип сжатия, при ц = 0 — тип чистого сдвига и при и = — 1—тип растяжения этим типам принадлежат соответственно окружности /, 3 и 2. Точки f, м / 2 —точки пересечения вспомогательного эллипса с осью абсцисс — являются фокусами огибающего эллипса.  [c.438]


Следовательно, при переходе от напряженного состояния типа растяжения к состоянию типа сжатия происходит увеличение крутизны касательной в граничной точке ", " ) (рис. 8.33).  [c.571]

Иными словами, при переходе от напряженного состояния типа растяжения к состоянию типа сжатия расширяется область разрушения пу- i i aw тем среза.  [c.571]

Так, для режимов циклического растяжения-сжатия и статического сдвига, а также циклического сдвига и статического растяжения-сжатия показано 13, 4], что интерпретация результатов в интенсивностях напряжений и деформаций позволяет получать единые кривые статического и циклического деформирования (рис. 11, а—в). При этом, как и для простых типов напряженного состояния (раста-жение-сжатие или сдвиг), сохраняют свои значения параметры обобщенной диаграммы, характеризующие цикли-  [c.87]

Исследование влияния размеров трубчатых образцов на предельное состояние графитов типа ВПП и МГ выполнено авторами совместно с А. М. Фридманом. Испытания проводили на образцах разных размеров с геометрически подобными рабочими участками. Отношение толщины стенки к среднему диаметру для всех партий составляло примерно 0,07. Образцы испытывали в условиях одноосного растяжения, одноосного сжатия и при следующих соотношениях между главными напряжениями +1,0, +0,5, —0,125, —1,0. В каждой серии испытывалось от 12 до 15 образцов.  [c.201]

На величину пластической деформации, которую можно ДОСТИЧЬ без разрушения (предельная деформация), оказывают влияние многие факторы, основные из которых — механические свойства металла (сплава), температурно-скоростные условия деформирования и схема напряженного состояния. Последний фактор оказывает большое влияние на значение предельной деформации. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Схемы напряженного состояния в различных процессах и операциях обработки давлением различны, вследствие чего для каждой операции, металла и температурно-скоростных условий существуют свои определенные предельные деформации.  [c.54]

Следует отметить, что перечисленные теории прочности неприменимы для расчета прочности в случае всестороннего сжатия ( Ti = = 02 = 03 = —Р)- Влияние типа напряженного состояния может быть учтено приближенно при помош,и диаграмм механического состояния, которые рассматриваются ниже.  [c.190]


Из вышеизложенного следует, что степень зависимости пластичности от схемы напряженного состояния для различных металлов и сплавов будет различной в зависимости от типа кристаллической решетки, наличия примесей, фазового состава, температуры и скорости деформации, структуры и ряда других факторов, воздействующих на пластичность. Однако независимо от степени влияния гидростатического давления на пластичность металла (сплава) пластичность увеличивается с алгебраическим уменьшением шаровой части тензора напряжения, т. е. с уменьшением величины k= jT — коэффициента жесткости схемы напряженного состояния. В связи с этим для установления количественной связи пластичности с величиной k (или для построения диаграмм Лр—не обязательно проводить испытания в камерах высокого давления. Достаточно знать величины Лр при растяжении ( =1 т/"3), кручении ( =0) и сжатии k——1 . у З).  [c.519]

В специальной главе изложены основы теории напряженного и деформированного состояния и некоторые сведения из теории упругости и пластичности, необходимые при инженерных расчетах. Приводятся также некоторые сведения по строительной механике., Книга по своему построению существенно отличается от справочников обычного типа. Теоретический материал излагается значительно подробнее, чем в обычных справочниках, но более сжато, чем в учебниках и учебных пособиях.  [c.8]

Для хрупких материалов, различно работающих на растяжение и сжатие, условие прочности зависит от типа напряженного состояния. Здесь могут встретиться следующие три случая  [c.308]

Чтобы из двух обсуждаемых условий текучести выбрать более подходящее для данного материала, нужно провести дополнительный эксперимент, в котором осуществлялось бы не простое растяжение или сжатие, а какой-либо другой тип напряженного состояния.  [c.459]

Воздушные выключатели того же завода на напряжение 500 кв, предназначаемые для линии передачи Волгоград — Москва, имеют отключающую мощность 25 тыс. Мва. Этот тип выключателя снабжен отделителем, выполненным в виде отдельной воздушной гасительной камеры. В отключенном состоянии гасительная камера отделителя заполнена сжатым воздухом, что создает достаточный воздушный промежуток для отсоединения выключателя от сети.  [c.103]

Результаты статистической обработки всех обследованных материалов показали, что коэффициент при параметре т Л имеет знак минус (Я > 0). Проанализируем, имеет ли это какой-то физический смысл. Числитель формулы (4.4) представляет величину, пропорциональную среднему напряжению, которое вызывает только изменение объема без изменения формы [72]. Если рассматривать этот эффект на микроуровне, то можно предположить, что среднее напряжение может влиять на межатомные силы связи и как следствие — на энергию активации процесса разрушения. Когда среднее напряжение больше нуля т] > 0), происходит ослабление межатомных сил связи когда преобладают напряжения сжатия ( <0), возможно увеличение энергии активации процесса разрушения. С увеличением жесткости напряженного состояния (0) растет величина rJ, и при положительном среднем напряжении вероятность хрупких разрушений повышается, в области сжимающих напряжений увеличение жесткости снижает вероятность разрушения. При всестороннем равном сжатии разрушение невозможно — энергия активации процесса разрушения безгранично растет. Таким образом, уравнение типа (4.16) позволяет раскрыть физическую суть параметра т и показывает, что изменение вида напряженного состояния приводит к изменению исходных свойств исследуемого материала, т.е. при каждом виде напряженного состояния исследователь имеет дело с измененным объектом исследования. В таких условиях теряется смысл оценки состоятельности критерия прочности на основании результатов анализа предельной поверхности предполагаемого неизменным материала [89].  [c.155]

Оценка малоцикловой прочности проводится путем сопоставления величин циклических упругопластических деформаций в максимально нагруженной зоне конструкции с разрушающими для конструкционного материала деформациями, полученными в условиях жесткого нагружения при испытании гш растяжение — сжатие гладких образцов. Выполненная оценка малоцикловой прочности исследованных труб показывает, что долговечность труб соответствует или несколько превышает долговечность конструкционного материала (ом. рис. 3.3.11, точки 4). При этом расчет ведется в максимальных тангенциальных деформациях или интенсивностях деформаций, отличающихся от первых на 10—15% для рассматриваемых типов напряженного состояния.  [c.176]


Изменение состояния поверхностного слоя. Положительное влияние на стойкость против КР стали типа 18-8 в хлоридах оказывает азотирование [59]. Диффузионное хромирование, сплошные никелевые покрытия также повышают сопротивление КР в различных средах [22, 59]. Хорошие защитные свойства показало алюминиевое покрытие [22]. Обезуглероживание поверхностного слоя коррозионно-стойких сталей также вызывало повышение стойкости против КР. Перспективным способом защиты от КР является создание белого слоя (15—30 мкм) на поверхности стали. Это объясняется более высокой коррозионной стойкостью белого слоя, большой гомогенностью его свойств, а также значительными остаточными напряжениями сжатия в нем [22].  [c.75]

Во второй работе выполнено уточнение для хрупких тел типа бетона с большим отношением и Rp. Уточнение преследовало цель замкнуть предельную кривую для плоского напряженного состояния и устранить завышенное значение прочности в области неравномерного трехосного сжатия. В результате такого уточнения уравнение поверхности разрушения приобрело вид )  [c.565]

Анализ напряженного состояния вблизи неоднородности, проведенный в работе /95/, показал, что в течение некоторого времени избыточное давление вблизи включения может превышать давление в падающей волне в несколько раз при условии отражения волн большой интенсивности (типа ударной). В свою очередь, повышенные механические напряжения могут вызвать разупрочнение границы включение-матрица, вплоть до отрыва включения по контактной границе. Так, в работе /96/ экспериментально и теоретически на основе лучевого приближения исследован вопрос об отрыве на границе раздела кругового включения под действием падающей волны сжатия. Оказалось, что в зависимости от интенсивности падающей волны возможен частичный или полный отрыв включения от матрицы.  [c.138]

Упомянутые выше программные испытательные стенды предназначены для проведения неизотермических испытаний в условиях простых типов нагружения (растяжение-сжатие, кручение). Однако существенный интерес представляют методики и аппаратура для исследования закономерностей деформирования и разрушения при слом<ном неизотермическом нагружении. Например, стенд и методика [71], обеспечивающие неизотермические испытания тонкостенных трубчатых образцов в условиях их программного нагружения осевой силой /V, крутящим моментом Л1,ф и внутренним давлением р. Реализуется плоское напряженное состояние с различными соотношениями компонент напряжений при наложении требуемого закона изменения температуры.  [c.150]

НИИ, а также приведены три области с различными типами напряженных состояний I — всестороннее неравномерное сжатие II — всестороннее неравномерное растяжение III — трехосное напряженное состояние с главными напряжениями разных знаков.  [c.162]

Рис. 8.33. К обобщению творив-О. Мора, предложенному М. М. Фи-лоненко-Бородичем положение точек делящих кривую = = /i (Стокт) две области, которым отвечают два подсемейства предельных окружностей О. Мора (соответствующих разрушению от среза-и — от отрыва — при напряженном состоянии типа растяжения = — 1) — при напря женном состоянии типа чистогв-сдвига (Ид = 0) Т к"— при напряженном состоянии типа сжатия (На = + 1). Рис. 8.33. К обобщению творив-О. Мора, предложенному М. М. Фи-лоненко-Бородичем положение точек делящих кривую = = /i (Стокт) две области, которым отвечают два подсемейства <a href="/info/15301">предельных окружностей</a> О. Мора (соответствующих разрушению от среза-и — от отрыва — при <a href="/info/183899">напряженном состоянии</a> типа растяжения = — 1) — при напря женном состоянии типа чистогв-сдвига (Ид = 0) Т к"— при <a href="/info/183899">напряженном состоянии</a> типа сжатия (На = + 1).
Прогрессивным методом является получение заготовок типа валов ротационным выдавливанием. В местах контакта ролика с заготовкой возникает большое давление, под действием которого металл заготовки течет в зазор между роликом и оправкой. Внутренняя поверхность детали принимает форму наружной поверхности оправки, а наружный контур повторяет траекторию перемещения рабочей кромки ролика. При этом образуется локальный очаг деформаши с благоприятной схемой напряженно-деформированного состояния (всестороннее неравномерное сжатие). При использовании таких заготовок валов КИМ повысился до 0,4.  [c.344]

Любое напряженное состояние, которое не может бьггь представлено единственной компонентой напряжения, т. е. то, которое более сложно, чем простое напряженное состояние типа сжатия или сдвига.  [c.922]

В то же время в точках /1, расположенных под углом 90°, возникают сжимающие напрял<е-ния, примерно равные по абсолютной величине действующим на контуре пластинки растягивающим напряжениям. Очевидно при сжатии пластинки в перпенднкуляр-иом направлении с напряжением а напряжения в точках тип будут равны указанным на рис. 234, б. В случае плоского напряженного состояния, при котором по взаимно перпендикулярным направлениям действуют напряжения а и—ст, как это имеет место при кручении (рис. 233), в рассматриваемых точках тип напряжения будут суммироваться, т. е. напряжения в точках т  [c.239]

В уравнениях деформационного типа (16.8.5) остается один неопределенный параметр А,. Эта неопределенность есть неизбежное следствие жесткого предположения о том, что напряженное состояние изображается точкой ребра призмы пластичности. Такое условие ограничивает выбор возможных напряженных состояний. Для того чтобы при этом были выполнены условия совместности деформаций, необходимо иметь известную кинематическую свободу. Но с другой стороны, можно привести примеры, когда вывод о неопределенности деформации на ребре поверхности нагружения противоречит опыту и, может быть, здравому смыслу. Так при простом растяжении или сжатии в направлении оси поперечные деформации могут быть произвольными, jjHHib бы выполнялось условие постоянства объема. Этот неприемлемый результат представляет собою неизбежное следствие слишком далеко идущей идеализации. Реально можно было бы  [c.556]


Величины X, Y, S и X Y S описывают предельные напряжения при растяжении и сжатии материала слоя в направлении волокон, в поперечном направлении и при сдвиге. Этих данных недостаточно для определения компонент тензоров прочности типа fu, поэтому появляется необходимость дополнительных экспериментов в условиях плоского напряженного состояния. Последние должны быть подготовлены и проведены очень тщательно для получения точных значений определяемых компонент прочности [33]. Условие устойчивости требует, чтобы FaFц — F i Q (повторяющиеся индексы не означают суммирования). By [33] показал, что для слоистого углепластика F12 можно приравнять нулю, если его абсолютная величина не превышает 0,6-10 mmVH.  [c.154]

В квадратичных критериях прочности, подобных критерию Хилла, смешанная компонента определяется через другие компоненты и не является независимой. В теориях типа теории наибольших нормальных напряжений (деформаций) принципиально не может быть взаимного влияния напряжений, так как критерий прочности задается в виде системы независимых неравенств, выполнение любого из которых означает достижение предельного состояния. Как и в модифицированном критерии Хилла, в критерии Цая — By используются предельные напряжения материала слоя при растяжении и сжатии. При построении предельных поверхностей на основании критерия Цая — By используется теория слоистых сред (предполагается, что материал слоя линейно упругий). Метод ограничивается оценкой возможности разрушения композита для заданного напряженного состояния, при этом не делается никаких предположений относительно причин разрушения (т. е. не анализируются компоненты тензора напряжения слоя, соответствуюшего достигнутому предельному состоянию).  [c.155]

Для правильной оценки результатов тензометрирования конструкций в условиях малоциклового нагружения необходимо располагать экспериментальными данными об основных свойствах применяемого типа тензорезисторов. Требуемая информация может быть получена в результате испытания тензорезисторов в контролируемых условиях деформирования. Обычно используется калибровка на образцах, подвергаемых изгибу с заданным прогибом, однако более правильными являются калибровка и длительн ые испытания при однородном напряженном состоянии растяжения — сжатия.  [c.151]

Свойства волокнистых композиционных материалов, особенно их механические свойства, при одном и том же содержании упроч-нителя, сильно зависят от ориентации волокон в матрице и от угла между направлением действия приложенной нагрузки и ориентацией волокон [77 ]. Примером тому являются приведенные на рис. 80 кривые изменения предела прочности в зависимости от направления приложения нагрузки материала алюминий — 50 об. % борного волокна с тремя схемами укладки армирующих волокон и на рис. 81 кривые изменения модуля упругости и модуля сдвига одноосноармированного материала алюминий — 50 об. % борного волокна [10,30]. Значения предела прочности, модуля упругости и удлинения композиционного материала на основе алюминиевого сплава 6061, упрочненного волокнами бора и борсик, с различными типами укладки волокон, приведены в табл. 44, 45. Представленные на рис. 80, 81 и в табл. 44 и 45 данные свидетельствуют о широких возможностях изменения свойств композиционного материала в зависимости от типа укладки армирующих волокон при одном и том же их общем содержании. Это позволяет с максимальной степенью реализовать прочностные свойства композиционного материала в детали, сконструированной таким образом, что количество и направление укладки волокон учитывают ее напряженное состояние. Приведенные в табл. 45 данные позволяют также получить представление о прочностных свойствах при сжатии композиций алюминий — бор. 206  [c.206]

Основные типы резиновых упругих элементов муфт и схемы их нагружения изображены на рис. 17.22, а — и. При выборе типа упругого элемента учитьшают следующее упругие элементы с равномерным напряженным состоянием по объему обладают большей энергоемкостью кручение и сдвиг дают большую энергоемкость, чем изгиб и сжатие выгодно, чтобы упругий элемент занимал большую долю объема муфты. Этим условиям в большей степени удовлетворяют типы упругих элементов, показанные на рис. 17.22, ж, 3, и.  [c.386]

Квазистатическое иовреждение не зависит от знака деформации, возникающей в конструктивном элементе (деформация растяжения или сжатия). Базовые данные должны быть получены с учетом формы и размеров образцов (при интерпретации результатов лабораторных испытаний), а также типа напряженного состояния конструктивного элемента (при расчете деталей машин или конструкций), определяющего в первую очередь стеснение предельных деформаций статического разрушения и, следовательно, снижение располагаемой пластичности 1[15].  [c.98]

В работе [411] исследовано влияние на механические свойства монокристаллов NigAl (сбдержащих 23,75% А1 и легированных 0,25% Hf) различных факторов температуры, формы поперечного сечения, состояния поверхности, вида нагрузки (растяжение, сжатие). Монокристаллы, полученные методом направленной кристаллизации, были ориентированы вблизи [001]. Отмечено, что форма образца слабо влияет на напряжение течения, но во всех случаях обнаружена аномальная температурная зависимость Оод. Кроме того, выявлено сильное влияние остаточных поверхностных напряжений на механические свойства. После удаления слоя 20 мкм (электролитическим способом) <То,2 уменьшалась во всей температурной области аномального изменения предела текучести. Также наблюдали асимметрию свойств при растяжении и сжатии для одинаковой скорости деформирования (1,710 с )- Разность Дт между напряжениями течения при растяжении и сжатии была положительной во всей температурной области аномального изменения предела текучести. Следует отметить, что аномальная температурная зависимость предела текучести проявляется и в случае никелевых сплавов, упрочненных интерметаллической у-фазой (тип NisAl) при ее определенной объемной доле.  [c.255]

Образцы боралюминиевых композиционных материалов испытывались на усталость под действием консольного изгиба [50, 52, 56, 62, 63, 86, 80, 78]. Преимущество первого типа испытаний заключается в возможности исследования влияния напряжений сжатия и растяжения без потери устойчивости образца. Однако недостатки, заключающиеся в неоднородности напряженного состояния, наряду с трудностью определения критерия разрушения, затрудняют интерпретацию полученных результатов. Обсуждаемые ниже данные были получены при усталостных испытаниях в осевом направлении, без учета этих недостатков.  [c.484]

Железо и стали. Сдвиговая прочность и упругие свойства железа и сталей в ударно сжатом состоянии изучены менее подробно по сравнению с медью и алюминием и в более узкой области значений О]. Методом измерения главных напряжений динамическая прочность стали Ст.З исследована в [27, 55]. Результаты этих работ и дополнительных экспериментов приведены в табл. 6.12. Их. обработка дает аналитическую связь линейного типа между главными напряж иями (в гигапаскалях)  [c.210]


Без сомнения, отношение тс/т является мерой пластичности материала. При простых напряженных состояниях материалы с высокими по сравнению с единицей значениями этого отношения, т. е. с высоким сопротивлением внутреннему разрыву при растяжении и относительно низким сопротивлением началу пластического течения, оказываются неработоспособными из-за перехода в пластическое состояние и поэтому называются пластичными, тогда как материалы с низким значением этого отношения оказываются неработоспособными из-за хрупкости и называются хрупкими. Однако разные материалы оказываются неработоспособными по различным причинам, определяемым типом напряженного состояния. Так Т. Карман показал, что образец из мрамора при испытаниях на сжатие может течь подобно образцу из мягкой меди, если его нагрузить боковыми сжимаюпщми напряжениями того же порядка величины, что и продольное сжатие, таким путем увеличивая сжимающие напряжения на плоскостях скольжения. Простейший путь получения внутреннего разрыва при растяжении в пластичном материале — нагрузить растяжением образец с глубоким надрезом (рис. 1.6). Это вызывает касательные напряжения в наклонных сечениях, подобных показанному на  [c.36]

Полоса с идеальными (бесконечно тонкими) разрезами. Растяжение полосы с идеальными разрезами (фиг. 103) является простейшей задачей рассматриваемого типа. В предельном состоянии полоса растягивается в направлении у со скоростью V по обе стороны от среднего сечения. Поле скольжения, показанное на фиг. 103, состоит из четырех эквивалентных областей. Вдоль свободной от напряжений границы разреза О А в ОАВ имеем простое равномерное сжатие или растяжение 2к примем, что в / ОАВ — растяжение (относительно другой возможности выбора см. ниже). К области ОАВ присоединяются центрированное поле ОВС и далее — треугольная же область равномерного напряженного состояния O D. Границей пластической области является р-линия D BA во всей  [c.179]


Смотреть страницы где упоминается термин Состояние напряженное типа сжатия : [c.433]    [c.569]    [c.39]    [c.183]    [c.659]    [c.288]    [c.102]    [c.647]    [c.67]    [c.115]    [c.136]    [c.47]    [c.551]    [c.66]    [c.192]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.569 , c.571 ]



ПОИСК



Типы напряженного состоянии



© 2025 Mash-xxl.info Реклама на сайте