Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Навье закон

Вязкость ньютоновских жидкостей определяется уравнением (1-9.4) как половина коэффициента пропорциональности в зависимости, связывающей тензор напряжений т с тензором растяжения D. Уравнение (1-9.4) предполагает, что компоненты тензора напряжений должны быть пропорциональны соответствующим компонентам тензора растяжений для любого заданного участка течения. Одним из хорошо известных следствий уравнений Навье — Стокса (уравнение. (1-9.8)) является закон Хагена — Пуазейля, связывающий объемный расход Q в стационарном прямолинейном течении жидкости по длинной круглой трубе с градиентом давления в осевом направлении  [c.55]


В рамках феноменологического подхода для нахождения закономерностей изменения неизвестных наблюдаемых величин в пространстве и во времени используются общие физические законы (такие, например, как законы сохранения, постулаты термодинамики и др.) в сочетании с соотношениями между наблюдаемыми величинами, вид которых получен в результате обработки экспериментальных данных. Основу феноменологического подхода для описания гидродинамики систем газ—жидкость составляют законы классической гидромеханики, которая строго описывает движение каждой фазы (см. разд. 1.3). Однако применение строгих результатов, полученных из фундаментальных соотношений гидромеханики (таких, как уравнение Навье—Стокса), к расчету газожидкостных течений является практически невыполнимой задачей, за исключением ряда простых примеров, рассмотренных во второй и третьей главах книги.  [c.184]

Измерения переноса количества движения в случае полностью развитого течения в трубе позволяют непосредственно оценить затраты энергии на перемещение жидкости. Еще более важно отметить, что полностью развитое течение в трубе является очень удобной моделью для изучения механики жидкости, позволяющей продемонстрировать основные ее законы. Это очевидно из рассмотрения уравнения Навье — Стокса для осевой компоненты скорости при стационарном ламинарном осесимметричном течении в отсутствие массовых сил. В цилиндрических координатах оно имеет вид [686]  [c.152]

Сборник объединяет работы, опубликованные автором в научных журналах в 1957-1998 гг. Предложены вариационные принципы газовой динамики без дополнительных ограничений и магнитной гидродинамики при бесконечной проводимости. Выведены полные системы законов сохранения газовой динамики и электромагнитной динамики совершенного газа. Дано аналитическое решение задач оптимизации формы тел, обтекаемых плоскопараллельным и осесимметричным потоками газа, а также формы сверхзвуковых сопел. Построены точные решения уравнений Навье—Стокса для стационарных течений несжимаемой жидкости, воспроизводящие вихревые кольца, пары колец, образования типа разрушения вихря , цепочки таких образований и др.  [c.2]

В каждой точке пространства, занятого движущейся жидкостью, имеем тензор напряжений П и тензор скоростей деформаций 5. Первоначально были сформулированы и экспериментально проверены простейшие частные случаи зависимости компонентов этих двух тензоров, как, например, закон Ньютона для касательных напряжений. Эти зависимости оказались линейными. Это привело к предположению, что линейная зависимость соблюдается и в общем случае. Для жидкостей эта линейная зависимость тензора напряжений от тензора скоростей деформаций носит название обобщенного закона Ньютона или закона Навье—Стокса.  [c.553]


Шесть скалярных уравнений (35) выражают обобщенный закон Ньютона или Навье—Стокса для жидкостей.  [c.555]

Подставляя закон Гука (2.5) в уравнения движения (1.157) и проводя преобразования, аналогичные проведенным при получении системы Навье —Стокса, получим следующую систему уравнений  [c.49]

Фундаментальный вклад в классическую теорию внесли Гук, Навье, Коши, Ляме, Грин, Клапейрон. Гуком в 1678 г. установлен закон, линейно связывающий напряжения и деформации.  [c.5]

В классической гидродинамике уравнение движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье — Стокса, которое получается на основе второго закона Ньютона.  [c.262]

Дифференциальное уравнение движения получается из условия равновесия действующих сил на выделенный элемент среды с использованием закона переноса количества движения [18, 39]. Для несжимаемой среды при неизменных ее физических свойствах и бQ = 0 уравнение движения (Навье — Стокса) записывается в краткой (векторной) форме следующим образом  [c.275]

Формула (7.109) получена путем совмещения параболического закона распределения скорости по сечению трубы (результат решения уравнения Навье —Стокса) и соотношения (7.107).  [c.147]

С помощью теории размерности мы установили, что если пренебречь инерционными членами в уравнениях Навье — Стокса, то закон Стокса (4.3) справедлив для тел любой формы.  [c.54]

Какова последовательность решения задачи Навье при поперечной нагрузке д, распределенной по произвольному закону  [c.182]

И представляет собой уравнение Навье — Стокса для несжимаемой жидкости, подчиняющейся закону трения Ньютона.  [c.276]

Уравнение движения. В классической гидродинамике уравне-нме движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье—Стокса, которое выводится на основе второго закона Ньютона. В проекции на ось Ох 8 0 уравнение имеет вид  [c.155]

Зная компоненты тензора скоростей деформаций, с помощью закона Навье — Стокса  [c.239]

Иногда по аналогии с законом Навье — Стокса (21.3) полагают, что  [c.252]

Отметим, что закон Навье — Стокса в случае турбулентных движений становится второстепенным, так как вместо гипотез о зависимости хц от вар. можно непосредственно выдвигать гипотезы о зависимости х1] от вар и, таким образом, совсем не привлекать к рассмотрению закон Навье — Стокса. Это можно оправдать также тем, что законом Навье — Стокса, вообще говоря, не отражаются такие свойства жидкости, которые могут оказаться существенными в турбулентных потоках.  [c.252]

Формула Навье. Если истечение изотермическое (т. е. температура остается постоянной), то, на основании закона Мариотта, имеем р ро = р ро, откуда  [c.302]

Уравнение движения отражает закон сохранения количества движения в соответствии со вторым законом Ньютона. Для невязкой жидкости уравнение движения сформулировал Эйлер. Трение в жидкости учли Навье и Стокс. Для вязкой ньютоновской жидкости уравнение движения (уравнение Навье — Стокса) в векторной форме имеет вид  [c.230]

До настоящего времени гидродинамическая теория [1] была разработана только для случая смазки подшипника маслами, обладающими истинной вязкостью, подчиняющейся закону Ньютона и уравнениям Навье — Стокса.  [c.31]

Уравнения движения невязкой жидкости были составлены Л. Эйлером. Навье и Стокс обобщили эти уравнения на случай течения жидкости, подчиняющейся закону трения Ньютона.  [c.26]

Выше при рассмотрении пленочной конденсации формулировка уравнений, описывающих движение и теплообмен в двухфазной системе, не вызывала принципиальных затруднений, поскольку обе фазы образовывали непрерывные потоки с одной отчетливо выраженной поверхностью раздела. Кипение представляет пример такого процесса, в котором компоненты потока могут быть в чрезвычайно сильной степени раздроблены на пузыри, капли, пленки. Для любого дифференциального объема каждого из таких конечных дискретных элементов системы безусловно справедливы рассматривавшиеся нами ранее обш,ие дифференциальные уравнения движения и теплопроводности. Точно так же для любой дифференциальной площадки на поверхностях раздела фаз справедливы рассмотренные ранее условия теплового и механического взаимодействия. Однако вследствие весьма большого числа дискретных элементов системы, их непрерывного возникновения, роста и деформации в процессе движения и теплообмена, весь такой двухфазный поток в целом должен характеризоваться некоторыми специальными вероятностными законами системы многих неустойчивых элементов. Здесь в известной степени можно провести аналогию с турбулентным течением однородной жидкости, в котором для каждого дифференциального элемента справедливо уравнение Навье-Стокса, а весь поток в целом подчиняется специальным (еще плохо известным) статистическим законам турбулентного течения.  [c.342]


Но сразу возникает вопрос что такое эффективная вязкость с точки зрения кинетической теории газов или жидкостей На него можно получить ответ, что степенной закон справедлив для жидкостей, а кинетическая теория жидкостей еще не создана. Однако при этом полезно заметить, что уравнения Навье—Стокса выведены Навье и Максвеллом для газов, но они оказываются справедливыми и для жидкостей, а все различие сводится только к различным видам потенциала взаимодействия сталкивающихся атомов или молекул.  [c.80]

Говард [6] на основе законов Ньютона вывел уравнение движения электронного потока. Полученное таким образом фундаментальное уравнение движения аналогично уравнению движения Навье-—Стокса непрерывных сред, но содержит в себе некоторые дополнительные члены. Предполагается, что среда непрерывна, гомогенна и изотропна. Силы, являющиеся источником движения среды, подразделяются на объемные и поверхностные.  [c.91]

Закон движения реальной жидкости описывается уравнением Навье — Стокса, которое для одномерного случая выглядит так dUJdt = U dU/dX) — (1/р) дР/дХ)- -+ Ом + у(д и/дХ ), где См — массовые силы v — вторая вязкость.  [c.70]

Подставляя обобщер ный закон Гужа в уравнения Навье и заменяя  [c.241]

В этой связи можно сказать, что закон Фурье для теплопроводности, закон Фика для диффузии, уравнение Навье-Стокса для течения вязкой жидкости, законы термоэлектрических явлений и т. п. представляют собой частные случаи общих феноменологическиэс соотношений термодинамики необратимых процессов.  [c.340]

Эти соотношения определяют обобщ,енные законы Навье — Стокса (для вязких напряжений обобш енные законы Фурье (для потоков тепла gf) в фазах, составляющих двухфазную смесь, законы для межфазной силы Fia, межфазного теплообмена Qi2 п кинетики фазовых переходов для Ла. При этом в Fu,  [c.39]

Уравнения Навье — Стокса рещены также для случая, когда поток вязкой жидкости течет в трубе, образуемой двумя соосными цилиндрами радиусов а и й (рис. 84, б). В этом случае (если а Ь) закон распределения скоростей имеет вид  [c.142]

В этой главе мы получим систему основных уравнений тепло- и массообмена для поля потока жидкости, обтекающего тело. Используя закон сохранения массы, получим дра уравнения — уравнение неразрывности в уравнение диффузии. С помощью теоремы имйульсов выведем уравнения движения пограничного слоя и уравнения Навье — Стокса. И, наконец, на основании закона сохранения энергии получим различные формы уравнения энергии пограничного слоя и общее уравнение энергии потока вязкой жидкости.  [c.33]

В классич. термодинамике изучают состояния теплового равновесия и равновесные (протекающие бесконечно медленно) процессы. Время явно не входит в осн. ур-ния термодинамики. Впоследствии (начиная с 30-х гг. 20 в.) была создана термодинамика неравновесных процессов. Состояние в этой теории определяется через плотность, давление, темп-ру, энтропию и др. величины (локальные тер-модинамич. параметры), рассматриваемые как ф-ции координат и времени. Для них записываются ур-ния переноса массы, энергии, импульса, описывающие эволюцию состояния системы с течением времени (ур-ния диффузии и теплопроводности, Навье — Стокса уравнения). Эти ур-ния выражают локальные (т. е. справедливые для данного бесконечно малого элемента объёма) законы сохранения указанных физ. величин.  [c.315]

Математические основы для описания электронного потока разработаны Говардом [6]. Его расчеты являются настолько общими, что электронный газ можно рассматривать как прототип более общего класса двухвязкостных жидкостей. Двухвязкостной жидкостью называется жидкость, кинематические свойства которой характеризуются двумя параметрами, называемыми тангенциальным и нормальным коэффициентами вязкости. Основное уравнение движения аналогично уравнению движения Навье—Стокса, однако оно содержит дополнительные члены, обусловленные, например, зарядом электрона. В основу вывода уравнений положены законы Ньютона. Говардом приняты следующие основные гипотезы  [c.92]


Смотреть страницы где упоминается термин Навье закон : [c.487]    [c.33]    [c.334]    [c.85]    [c.20]    [c.203]    [c.200]    [c.234]    [c.241]    [c.250]    [c.261]    [c.115]    [c.3]    [c.181]    [c.11]   
Техническая энциклопедия Том 1 (0) -- [ c.153 ]



ПОИСК



Вывод закона подобия Рейнольдса из уравнений Навье — Стокса

Закон Навье — Стокса

Навой 97, XIV

Навье

Навье закон 153, XIII



© 2025 Mash-xxl.info Реклама на сайте