Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световые Нормали

Полное внутреннее отражение. В предыдущем параграфе мы получили закон преломления света, согласно которому отношение синуса угла падения к синусу угла преломления равно показателю преломления второй среды относительно первой. Из этого закона следует, что при прохождении световой волны из оптически менее плотной среды в более плотную преломленный луч приближается к нормали. И обратно, когда свет распространяется из оптически более плотной среды в менее плотную, преломленный луч удаляется  [c.53]


Скорости распространения фазы (скорость по нормали) и энергии (скорость по лучу) световой волны. Рассмотрим, как распространяется в анизотропной среде монохроматическая световая волна,  [c.248]

Соотношение между скоростями распространения фазы (скорость по нормали) и энергии (скорость по лучу) световой волны. Поток лучистой энергии, как известно, определяется произведением скорости потока энергии, которую называем скоростью по лучу v , на плотность энергии поля световой волны w, т. е.  [c.250]

Уравнение (10.19) называется уравнением волновых нормалей Френеля и позволяет определить скорость по нормали в зависимости от направления нормали N, заданного Nx, N у, N,, и от свойства кристалла, заданного главными скоростями y.v, Vy, или главными диэлектрическими проницаемостями е, ., е.у, t%. Отметим, что v, , (л — скорости света в случае, когда колебания вектора электрической индукции совершаются по главным диэлектрическим осям, а Уд/ — скорость световой волны для произвольного направления, но перпендикулярной фронту волны вектора D и, следовательно, направленной по нормали N.  [c.252]

Разложим скорость частицы в первой среде на составляющие и и г (см. рис. 1.4) тогда скорость частиц, переходящих из первой среды во вторую, меняется под влиянием притяжений между световыми частицами и частицами среды. Притяжения эти направлены по нормали к границе раздела двух сред и поэтому  [c.16]

В заключение еще раз сопоставим определения естественного и поляризованного света. Естественный свет есть совокупность световых волн со всеми возможными направлениями колебаний, быстро и беспорядочно сменяющими друг друга совокупность эта статистически симметрична относительно волновой нормали, т. е. характеризуется неупорядоченностью направлений колебании.  [c.379]

Итак, направление распространения фазы волны (вдоль нормали N) и направление распространения энергии волны (вдоль луча 8) не совпадают между собой. Скорость фазы V, измеренная вдоль нормали (фазовая скорость), будет отличаться от скорости распространения световой энергии и, измеренной вдоль луча (лучевая скорость).  [c.42]

К настоящему времени сформировались два комплекса средств противорадиационной защиты. Первый из этих комплексов включает системы ограждений, делающих невозможными вход в зону опасных излучений и контактирование с радиоактивными веществами. Второй комплекс охватывает системы дозиметрического контроля — средства обнаружения излучений, измерения и регистрации их уровня, световой и звуковой сигнализации, предупреждающей о появлении угрозы нарушения установленных норм радиации.  [c.164]


Считается, что приборы (двойные микроскопы, приборы светового сечения), в которых реализуется метод светового сечения, позволяют измерять неровности поверхности высотой от 0,8 до 63 мм с допустимыми погрешностями показаний по норме порядка 24 и 7,5% соответственно при наличии четырех пар сменных объективов ОС-39, ОС-40, ОС-41 и ОС-42. Следует заметить, что при этом неровности поверхности кромок шторок, прикрывающих диафрагмированную щель (иначе говоря, щелевую диафрагму), должны  [c.106]

Световой поток представляет собой меру световой энергии в единицу времени. Однако в качестве практической характеристики светового потока используется понятие освещенность , измеряемая в люменах на квадратный метр (люксах). Сколько энергии потребляется на освещение Основываясь на строительных нормах, ответ дать просто. С 50-х до конца 70-х годов освещенность по строительным нормам увеличивалась в среднем на 43 лк в год. Из этого следует, что в начале 50-х годов обычным уровнем освещенности было 200 лк,  [c.265]

Обычная нерелятивистская динамика имеет дело с состоянием динамической системы в определенный момент времени, заданным значениями д тл р. С помощью уравнений движения можно, зная состояние в один момент времени, вычислить состояние в другой момент времени. Такие уравнения движения, записанные в гамильтоновой форме с однородными скоростями,, требуют только Ф первого класса. Чтобы построить динамическую теорию, необходимо ввести систему уравнений, допускающую наблюдателей с любыми скоростями, причем каждому наблюдателю ставится в соответствие момент времени. Под моментом мы подразумевали трехмерную гиперплоскость пространстве-времени с нормалью внутри светового конуса. Момент времени задают, таким образом, четырьмя параметрами тремя направляющими косинусами нормали гиперповерхности или скорости наблюдателя и четвертым параметром, позволяющим различать моменты для одного и того же наблюдателя.  [c.718]

Освещенность и яркость. Основными факторами, определяющими работоспособность зрения, являются угловой размер объекта наблюдения, определяемый его линейными размерами и расстоянием до глаз наблюдателя яркость фона, на котором рассматривается объект контраст объекта с фоном, определяемый различием в уровнях яркости время наблюдения. Увеличение каждого из этих параметров до определенных пределов повышает работоспособность и снижает утомляемость зрения [41]. В нормах искусственного освещения более правильно регламентировать не освещенность, а яркость [17]. Однако трудность расчета и контроля яркости рабочих поверхностей вынуждает нормировать освещенность. Освещенность (в лк) является поверхностной плотностью светового потока и равна  [c.164]

Ограничение пульсации освещенности. В связи с малой световой инерцией газоразрядных источников света при питании их током промышленной частоты 50 Гц могут возникнуть колебания светового потока установки во времени, приводящие к пульсации освещенности на рабочих поверхностях. Эта пульсация с частотой 100 Гц неощутима визуально, но вызывает преждевременное утомление зрения. В нормах СССР регламентируются максимально допустимые значения коэффициента пульсации освещенности. В нормах Великобритании и Японии, кроме этих показателей, предусмотрены вопросы адаптации. В целях сниже-  [c.167]

Световые лучи оказывают ослепляющее действие, так как их яркость значительно превышает норму, допускаемую для человеческого глаза (до 10 000 раз). Ультрафиолетовые лучи даже при кратковременном Действии в течение нескольких секунд вызывают заболевание глаз, называемое электроофтальмией. Оно сопровождается острой болью, резью в глазах, слезотечением, спазмами век. Продолжительное действие ультрафиолетовых лучей приводит к ожогам кожи. Инфракрасные лучи при длительном действии вызывают помутнение хрусталиков глаз (катаракта), что может привести к ослаблению и потере зрения, тепловое действие этих лучей вызывает ожоги кожи. Защита зрения и кожи лица при дуговой сварке обеспечивается применением щитков, масок или шлемов, в смотро вое отверстие которых вставляют светофильтры, задерживающие и поглощающие излучение дуги. В зависимости от мощности дуги применяют различные светофильтры. Для защитц окружающих от  [c.155]


Распространение света внутрь металла. Часть света, проходящая внутрь металла, как отмечено в ыше, сильно поглощается в нем. По этой причине в процессе взаимодействия света с металлами существенную роль играют их очень тонкие слои. При таком рассмотрении амплитуда световой волны будет резко уменьшаться по мере проникновения внутрь металла. Пусть монохроматическая световая волна длиной Kq нормально падает на поверхность металла. Ось 2 направим по нормали. Слой металла толщиной dz поглощает часть падающей энергии, пропорциональную толщине поглощающего слоя, т. е. dl = —aldz. Если проинтегрировать это выражение от нуля до 2, то получим известный закон Бугера, о котором более подробно речь пойдет позднее (см. гл. X)  [c.62]

Волновая (лучевая) поверхность. Изучение распространения световой волны в анизотропной среде может быть, как мы видели, в равной мере осуш,ествлепо, исходя как из скоростей по лучу, так и 3 скоростей по нормали. Знание значений лучевых скоростей и скоростей по нормали по всем направлениям в кристалле позволяет построить вспомогательные поверхности, характеризуюш,ие распространение света в данном кристалле.  [c.257]

Пусть на исследуемую площадку ( S - 1 в единицу времени падает по направлению нормали N фотонов. Часть из них отражается, часть поглощается. Если, как обычно, обозначить через Я энергетический коэффициент отражения, то каждую секунду отразится f N фотонов, а (1 — I )N фотонов будет поглощено. При отражении каждого фотона произойдет изменение импульса, равное 2hvj . При поглощении фотона изменение импульса будет hv/ . Световое давление, определяемое суммой импульсов, которые переданы площадке (SS = 1,  [c.446]

Итак, направление распространения фазы волны (вдоль нормали N) и направление распространения энергии волны (вдоль луча 5) не совпадают между собой. К этому выводу, полученному путем исследования законов электромагнитного поля в анизотропной среде, мы пришли раньше из простого рассмотрения формы поверхности волны для анизотропной среды (см. 142). Скорость фазы q, измеренная вдоль нормали, будет отличаться от скорости световой энергии v, измеренной вдоль луча (лучевой скорости), так что q v osa (см. упражнение 201). Дву.м значениям скорости фронта по нормали q и q", обусловливающим двойное лучепреломление, соответствуют и два значения скорости распространения энергии, v и v".  [c.501]

Чтобы представить, как распространяются плоские световые волны в кристалле и как меняется фазовая скорость волны в зависи.мости от изменения направления нормали к волне, рассмотрим распространение волны из некоторой точки О внутри кристалла (рис. 17.17). Будем откладывать фазовую скорость света в виде радиуса-вектора по всем возможным направлениям нормали к волне. Тогда через концы нормальных скоростей мож-нр провести поверхность, которую называют поверхностью нормалей. Поверхность нормалей имеет двупо-лостный характер. Пересечение радиуса-вектора с поверхностью нормалей дает два значения скорости и 02, что соответствует распространению в заданном направлении двух плоских световых волн. Скорости по осям А, у, г соответственно равны йу и а , х и аг, йу и а .  [c.45]

Корпускулярная интерпретация опытов Винера. Электромагнитная природа света была впервые экспериментально подтверждена в классических опытах О. Винера (1890), который наблюдал интерференцию от двух монохроматических световых волн, распространяющихся навстречу друг другу. Такие движущиеся в противоположных направлениях взаимно когерентные волны возникают в результате отражения от зеркала световой волны, падающей на него по нормали. При отражении от металлического зеркала фаза колебаний вектора напряженности электрического поля волны изменяется на я, что обеспечивает соблюдение равенства нулю тангенциальной составляющей электрического поля на поверхности металла. Направляя ось Z по нормали к поверхности зеркала, а ось Л"-колли-неарно линии колебаний вектора напряженности S электрического поля волны (рис. 23), можно для падающей и отраженной волн написать  [c.42]

Оптический метад анализа текстур основан на использовании кристаллографической анизотропии скорости химического растворения. При правильном подборе режима травления на поверхности кристаллитов можно получить фигуры травления, хорошо наблюдаемые в световом микроскопе. Форма этих фигур травления и их ориентировка в плоскости шлифа зависят от того, какой кристаллографической плоскостью hikdi ориентирован соответствующий кристаллит параллельно плоскости шлифа и как эта плоскость hikili повернута вокруг нормали к плоскости шлифа.  [c.272]

Более современной модификацией прибора КИФМ-1 является структуро-скоп МФ-31КЦ (рис. 33). Он имеет существенные отличительные признаки намагничивание и размагничивание контролируемого объекта осуществляется автоматически после пуска электронного блока путем нажатия кнопки пуска для удобства работы с прибором кнопка пуска электронного блока расположена корпусе первичного преобразователя осуществлена цифровая индикация значений тока размагничивания предусмотрена работа прибора в режиме сортировки контролируемых изделий по признакам норма, больше нормы, меньше нормы. Результат сортировки отображается лампами световой сигнализации, расположенными на передней панели прибора. Верхняя и нижняя границы сортировки задаются с помощью ручек регулирования, выве-  [c.71]

Учитывая, что в ряде жилых домов и особенно в некоторых общественных зданиях, построенных за последние годы в различных городах страны, значительно завышены площади световых проемов против дапускаемых нормами, проекты жилых домов, общественных зданий и сооружений, реализуемые в одиннадцатой пятилетке, выполнены в основном с учетом установленного показателя удельного расхода тепловой энергии на отопление на 1 общей площади зданий.  [c.96]


Строгое волновое представление пучка лучей , исходящих из некоторого источника, с резко ограниченным конечным поперечным сечением, получается в оптике, по Дебаю, следующим образом берется суперпозиция континуума плоских волн, каждая из которых заполняет все пространство, при этом нормали к входящим в суперпозицию волновым поверхностям изменяются в пределах заданного угла. Вне определенного двойного конуса полны в результате интерференции почти совершенно уничтожают друг друга, так что с ограничениями, связанными с дифракцией, получается волновое представление ограниченного светового пучка. Подобным же образом можно представить и бесконечно узкий лучевой конус, изменяя лишь волновую нормаль совокупности плоских воли внутри бесконечно малого телесного угла. Этим обстоятельством воспользовался фон Лауз в своей знаменитой работе о степенях свободы лучевых пучков ). Наконец, вместо того чтобы использовать, как это до сих пор молчаливо предполагалось, только чисто монохроматические волны, можно варьировать частоту внутри некоторого бесконечно малого интервала и посредством соответствующего подбора амплитуд и фаз ограничить возмущение областью, которая будет сравнительно мала также и в продольном направлении. Таким образом может быть шшучаыо анадихическоа прадртаилениА энергетического пакета сравнительно небольших размеров этот пакет будет передвигаться со скоростью света или в случае дисперсии с групповой скоростью. При этом мгновенное положение энергетического пакета (если не касаться его структуры) определяется естественным образом, как та точка пространства, где  [c.686]

Естественный луч представляет собой поперечную электромагнитную волну с хаотической произвольной ориентацией этих векторов относительно волновой нормали. Если естественный луч проходит через прозрачный кристалл, атомы которого располагаются в виде пространственной решетки таким образом, что свойства оптического кристалла по различным направлениям оказываются различными, т. е. наблюдается анизотропия, то можно получить на выходе из такого кристалла-поляризатора луч, который будет иметь вполне определенную ориентацию векторов Е н Н. Практически это означает, что при прохождении через такой кристалл луч раздваивается (двойное лучепреломление). Каждый из таких лучей при про-хо кдении через второй кристалл будет снова раздваиваться, но давать лучи различной интенсивности, а в некоторых случаях один луч (второй) практически исчезает. Вращая вокруг оси такой кристалл, можно пропускать больше или меньше света. Таким образом, получается поляризованный свет, представляющий собой световые волны с определенной ориентацией электрического и магнитного векторов. Помещая на пути такого луча модель из прозрачного материала, будем изменять условия прохождения света в зависимости от того, как будут ориентированы оси анизотропии этого материала. Степень анизотропии будет зависеть от величины и направления действующих механических напряжений.  [c.65]

Волновые нормали света — см. Световые волны — Нормали Волновые поверхности света — см. Световые волны — Распространение Волновые уравнения — Интегрирование методом Фурье 1 (1-я) — 246 Волны, воздушные в магистральных трубопроводах тормозов 13 — 708 Волны одиночные Скотт Русселя 1 (1-я) —  [c.39]

СИЛА [Магнуса действует на тело, вращающееся в набегающем на него потоке жидкости или газа, направленная перпендикулярно к потоку и оси вращения нормального давления — часть силы взаимодействия тел, направленной по нормали к поверхности их соприкосновения оптическая линзы в воздухе — величина, обратная фокусному расстоянию линзы поверхностная приложена к поверхности тела подъемная — составляющая полной силы давления на движущееся в газе или жидкости тело, направленная перпендикулярно к скорости тела равнодействую1цая эквивалентна действию на тело системы сил света — отношение светового потока, распространяющегося от источника в рассматриваемом направлении внутри малого телесного угла, к этому углу термоэлект-родви ку цая возникает в электрической цени, составленной из разнородных проводников, контакты между которыми имеют различную температуру тока — отношение электрического заряда, переносимого через сечение проводника за малый интервал времени, к /гому интервалу трения (препятствует относительному перемещению соприкасающихся тел, слоев жидкости или газа качения действует на цилиндрическое или шарообразное тело, катящееся без скольжения цо плоской или изогнутой поверхности покоя имеет максимальное значение составляющей взаимодействующих тел и направлена по касательной к поверхности соприкосновения скольжения действует при движении соприкасающихся тел и направлена по касательной к поверхности их соприкосновения) тяжести — равнодействующая силы гравитационного взаимодействия тела с Землей и центробежной силы инерции, обусловленной вращением Земли фотоэлектродвижушая — ЭДС, возникающая в полупроводнике при поглощении в нем электромагнитного излучения электродвижущая (ЭДС) — характеристика источника тока, определяемая работой, затрачиваемой на перемещение единичного положительного заряда по замкнутому контуру]  [c.275]

Понятие лучей сохраняется и в еолковой оптике, в к-рой световые лучи Г. о. трактуются как нормали к волновой поверхности — геом. месту точек, в к-рых световые эл.-магн, колебания имеют одинаковую фазу. Согласно теореме Малюса — Дюпена, пучку лучей, вышедшему из к.-л. точки, после произвольного числа преломлений и отражений в последней среде соответствует множество ортогональных этому пучку поверхностей, являющихся волновыми поверхностями, т. е. свойство ортогональности не теряется при преломлении и отражении. Произведение показателя преломления однородной среды п на расстояние между двумя волновыми  [c.438]

При падении световой волны по нормали к идеально плоской поверхности амплитуды отражённой и преломлённой световых волн могут быть получены из ур-ния волны в предположении непрерывности тангенциальных составляющих злектрич. вектора при переходе из одной среды в другую. С учётом оптич. свойств границы раздела сред непосредственно получают связь между амплитудами волн падающей, отражённой и прошедшей. При нормальном падении света амплитудный козф. отражения  [c.510]

Под действием светового пучка, имеющего, напр., гауссову форму, нелинейная среда становится оптически неоднородной в центре пучка, где больше интенсивность, показатель преломления больше, чем для краёв пучка, а следовательно, фазовая скорость в центре будет меньше, чем по краям пучка. Это приведет к иска-жецню первоначально плоского волнового фронта, а лучи, распространяющиеся по нормали к фронту, искривляются (нелв-гейная рефракция) к оси (рис. 1, . Первоначально однородная среда становится своеобразной  [c.415]

В волновой оптике Ф. п. представляет собой предельный случай Гюйгенса — Френеля принципа и применим, если можно пренебречь дифракцией света (когда длина световой волны мала по сравнению с наименьшими характерными для задачи размерами) рассматривая лучи как нормали к волновым поверхностям, легко показать, что при всяком распространении света оптич. длины будут иметь экстремальные значения. Во всех случаях, когда необходимо учитывать дифракцию, Ф. п. (как и геом. оптика вообще) неприменим.  [c.282]

Главным сечением, называется плоскость, проходящая через оптическую ось. Обычно рассматривают главное сечение, проходящее через световой луч. Луч, поляризованный в плоскости главного сечения, называется обык-новенны.и. Он подчиняется законам преломления геометрической оптики. Луч, поляризованный в плоскости, перпендикулярной главному сечению, называется необыкновенным его показатель преломления зависит от угла падения плоскости, построенные на нормали к поверхности в точке падения и падающем и преломленном лучах, могут не совпадать.  [c.223]


В местах возможного скопления газа должны быть установлены автоматические газоанализаторы, специальные звуковые, световые или другие приборы, сигнализирующие об утечке газа. Концентрация газа в помещении не должна превышать Vs нижнего предела его взрываемости и не должна быть выше допустимо ) по санитарпым нормам.  [c.175]


Смотреть страницы где упоминается термин Световые Нормали : [c.4]    [c.249]    [c.249]    [c.253]    [c.256]    [c.53]    [c.157]    [c.66]    [c.340]    [c.213]    [c.141]    [c.279]    [c.441]    [c.441]    [c.28]    [c.32]    [c.460]    [c.137]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.251 ]



ПОИСК



Нормаль



© 2025 Mash-xxl.info Реклама на сайте