Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

см Испытания на растяжение при пониженных

Испытания при пониженных температурах на растяжение 3 — 67  [c.151]

Растяжение — Испытание при пониженны температурах 3 — 67  [c.276]

Для всех испытаний на растяжение методика регламентирована государственными стандартами. ГОСТ 1497 регламентирует испытания при комнатной температуре (15-30°С), ГОСТ 11150 при пониженных (0 -100 и -196°С) и ГОСТ 9651 при повышенных температурах (до 1200°С). Порядок механических испытаний, формы и размеры образцов сварных соединений регламентированы ГОСТ 6996.  [c.281]


ГОСТ 1150, Металлы. Методы испытаний на растяжение при пониженных температурах.  [c.353]

Лишь при 500 "С наблюдается некоторое понижение пластичности вследствие использования для электронной плавки недостаточно чистого никеля. На результатах испытаний сказалось воздействие внешней среды, поскольку растяжение образцов при всех температурах производили в воздушной атмосфере. Сравнительное испытание образцов в вакууме 10 Па при 900°С показало улучшение пластичности и небольшое понижение прочности ав — 45 МПа, Оо2 = 28 МПа, 6 = 98%, ф = = 100%.  [c.155]

Насыщение никеля водородом приводит к хрупкому межкристал-литному разрушению при испытании на растяжение относительное удлинение чистого никеля при 20 °С не зависит от скорости деформации, тогда как удлинение наводороженного никеля уменьшается с ее понижением [1]  [c.160]

ГОСТ 11150—75. Метал. . Метод испытаний на растяжение при пониженных температурах.— Введ. 01.01.76.  [c.195]

Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

Для испытаний на растяжение используются следующие стандарты ГОСТ 1497—73 для испытаний при 15—30°С ГОСТ 9651—73 при повышенных температурах ГОСТ 11150—75 при пониженных температурах ГОСТ 22706—77 при температурах от —100 до —269 °С ГОСТ 11701—66 для тонких листов v полос толщиной от 3 до 0,5 мм ГОСТ 10446—63 для проволоки диаметром до 16 мм ГОСТ 10006—73 для испытаний труб.  [c.38]

При проектировании авиакосмической техники, которая при минимальной массе должна обладать достаточной прочностью, нужно учитывать, что прочность при двухосном нагружении больше, чем при одноосном, а прочностные свойства возрастают при понижении температуры. В данной работе изучены свойства при двухосном (1 1 и 2 1) растяжении в интервале температур от комнатной до 20 К с целью получения необходимых расчетных данных. Разработан аналитический метод расчета свойств материала при двухосном растяжении, исходя из результатов испытания на одноосное растяжение при соответствующей температуре.  [c.59]


При понижении температуры механические свойства в общем случае не меняются или постепенно возрастают. Исключение составляет относительное удлинение при испытании на двухосное 1 1 растяжение при 77 К.  [c.66]

Углерод. С повышением содержания углерода растет сопротивление стали разрыву, а также увеличивается упругость и повышается предел текучести. Относительное удлинение при испытании образцов стали на растяжение уменьшается. Такое изменение физико-механических свойств соответствует понижению пластичности при холодной штамповке. Следовательно, сталь для глубокой вытяжки должна содержать минимальное количество углерода. Такой сталью является марка 08 и отчасти 10.  [c.422]

Изменение пластичности при испытании на растяжение (уменьшение поперечного сечения при растяжении) в процессе старения показано на рис. 4 [71]. Пониженная пластичность,  [c.13]

При помощи специальных приспособлений на копре могут проводиться испытания на ударное растяжение при повышенных и пониженных температурах. На рис. 10 показана принципиальная схема такой установки. Приспособление для закрепления микрообразца 1 изготовлено в виде длинной трубы а, в которой жестко закреплен неподвижный захват подвижный захват имеет удлиненную головку, о которую ударяет молот копра, выполненный  [c.168]

Испытания металлов на растяжение при пониженных температурах по ГОСТ 11150 — 75 2 (от 0 до —100 °С) 10 мин — для круглых образцов диаметром 6 мм и менее и для плоских образцов толщиной 4 мм и менее й 15 мин для образцов больших размеров 18-110 52-186  [c.280]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Пластическую деформацию (наклеп) в холодном состоянии часто применяют при изготовлении высокопрочной ленты и проволоки. В результате действия наклепа количество мартенсита при превращении у М увеличивается с повышением степени обжатия и понижением температуры пластической деформации. Этот способ повышения прочности используется самостоятельно в сочетании с последующим старением при 460—500° С. В табл. 11 приведены изменения пределов текучести, прочности и удлинения листового материала СН2 при кратковременном испытании на растяжение (10—20 мин).  [c.141]

Указанные испытания на растяжение производят по методам, изложенным в ГОСТе 1497—61, на цилиндрических и плоских образцах, согласно формам и размерам, установленным в том же стандарте. Испытания на растяжение при повышенных температурах (до 1200° С) установлены ГОСТом 9651—61, при пониженных (до 100° С)—ГОСТом 11150—65, на длительную прочность — ГОСТом 10145—62, тонких листов и лент (до 4 мм) — ГОСТом 11701—66, труб— ГОСТом 10006—62, проволоки — ГОСТом  [c.4]

Ввиду пониженных по сравнению со сталью пластичных свойств механическое испытание чугуна отличается некоторыми особенностями. Образцы отливок подвергают испытаниям на растяжение и на изгиб с обязательным определением стрелы прогиба. Образцы испытывают на изгиб в соответствии с ГОСТом 2055—43. Действительные размеры образца промеряют после излома  [c.70]


Испытания на растяжение при низких температурах имеют меньшее значение, чем ударные испытания. При испытании стали с понижением температуры повышаются предел прочности при растяжении, предел упругости н предел текучести, причём последний возрастает значительно быстрее, чем предел прочности.  [c.67]

Механические испытания сварных соединений, а такл<.е измерение твердости металла различных участков сварного соединения и наплавленного металла проводят при нормальной температуре, равной (20+10) °С. Испытания различных участков сварного соединения на статическое растяжение, ударный изгиб и стойкость металла против механического старения проводят при нормальной температуре или при повышенных или пониженных температурах, если это предусмотрено стандартами или другой технической документацией.  [c.479]

Схема перехода каменной солн из вязкого состояния в хрупкое при понижении температуры испытания на растяжение (по А. Ф. Иоффе).  [c.417]

Сочетание объемного растяжения, понижения температуры и повышения скорости деформирования способствует образованию хрупких состояний и использовано в методах серийных испытаний на ударную вязкость по Шарни и Менаже. По результатам этих испытаний строят температурные зависимости удельной энергии разрушения при ударном изгибе образцов с надрезом. Ударные испытания образцов с надрезом позволяют оценить склонность материала к образованию хрупкого состояния с понижением температуры, которая характеризуется как хладноломкость.  [c.14]

Увеличение напряжения при испытании сопровождается понижением теплостойкости [14, 16]. Главной причиной этого является то, что по определению теплостойкость оценивается температурой, при которой достигается заданная деформациями которая прямо пропорциональна напряжению и обратно пропорциональна модулю упругости. При оценке теплостойкости по измерению деформаций при растяжении в Зобщую деформацию "за-метный вклад вносит также тепловое расширение. На рис. 6.3  [c.201]

При таком испытании получается пониженная, а не средняя характеристика прочности нити, так как при растяжении целого мотка (пасмы) разрыв начинается с отдельных менее деформирующих витков. При этом нагрузка на оставшиеся витки резко повышается и они постепенно расползаются.  [c.439]

Наоборот, понижение скорости испытания приводит к многочисленным межкристаллитным трещинам никеля технической чистоты при 1000°С и к хрупкому разрушению при 600°С без существенной местной деформации. При 1000°С и малой скорости растяжения (0,5 мм/ч) видимые следы скольжения в зернах отсутствуют, наблюдается межзерен-ная деформация при скорости растяжения, 280 мм/ч деформация по границам зерен частично подавляется вследствие интенсивного развития процессов скольжения в зернах в сочетании с рекристаллизацией деформированной структуры. Понижение скорости растяжения при 600 "С также приводит к уменьшению внутризерениого скольжения [1].  [c.155]

Стандартами регламентированы испытания на растяжение при 15—30°С [261 при повышенных [27] при пониженных температурах [28] при температурах от—100 до—269°С [29]. Размеры и форма образцов стандартизированы [26]. Форма образцов цилиндрическая или призматическая. Обычно образцы имеют две головки, форма и размеры которых соответствуют захватам машины. Образцы без головок, устанавливаемые в клиновые зажимы с острыми насечками, применяют только для испытания пластичных материалов. В образцах с хрупкими покрытиями (Zr02, А12О3, интерметаллидов системы N1—А1, N1—Т1) переходы от головок к рабочей части должны выполняться в виде галтелей большого радиуса.  [c.22]

Стз), не отражающего всех особенностей работы металла в условиях эксплуатации конструкций. Следовательно, прогнозировать влияние того или иного вида напряженного состояния на работоспособность материала приходится на основании очень ограниченной информации. Восполнить этот пробел позволяет привлечение для анализа некоторых экспериментально установленных фактов и представлений о поведении материала в экстремальных точках пространства напряжений. Например, результаты многочисленных исследований поведения материалов в условиях всестороннего давления, а также известные представления о роли межатомных сил связи в процессе разрущения позволяют предположить, что либо при всестороннем равном сжатии разрущение вообще невозможно, либо для развития повреждений в этих условиях требуется гораздо больше усилий, чем при всестороннем равном растяжении. Следует также иметь в виду экспериментально установленный факт в ряде случаев, особенно если исследуемый материал имеет пониженную пластичность, в области двухосных растяжений (ст,>0 02>0 сг =0) сопротивление разрушению меньше, чем при одноосном растяжении, например, испытания [86] стали Х18Н9Т и углеродистой стали при отрицательной температуре [87].  [c.138]

Хрупкое межзерениое разрушение наблюдалось в алюминии при пониженной температуре [135], а также в сплаве АМГ6 после приложения 500 циклов повторных нагрузок и последующего испытания на растяжение при температуре —196 и —253°С.  [c.49]

Другим существенным вопросом, который необходимо учитывать в процессе оценки повреждений при длительном малоцикловом нагружении, оказывается наблюдаемый в ряде случаев эффект большего повреждающего действия выдержек при растяжении, чем при растяжении — сжатии или только сжатии, проявляющийся в испытаниях как в режиме мягкого (ползучесть), жесткого (релаксация), так и промежуточного между мягким и жестким нагружением. В работах [80, 203, 216] на аустенитной нержавеющей стали типа 18Сг—8Ni (600—650° С) отмечается при наличии выдержек в цикле растяжения двукратное снижение числа циклов до появления макротрещины. На рис. 1.2.2, б в качестве примера приведены данные для стали Х18Н9 (650° С) по накоплению повреждений при длительном малоцикловом нагружении с выдержками при растяжении. Отмечается понижение для указанного режима величины В до 0,5 [80].  [c.36]


Деформационные микрорельефы в зоне сопряжения слоев композиции, испытанной при 200 и 20 С (рис. 132, д и е), практически не отличаются один от другого деформационная структура при этом характеризуется развитием волокнистых и прямолинейных полос скольжения, типичных для составляющих композиции. При данном режиме испытаний по сравнению с деформированием при высоких температурах ослабляется роль межслой-ных поверхностей раздела. При растяжении в условиях пониженных температур в деформационной структуре испытанных композиций наблюдаются качественные изменения. Например, при —40° С деформация слоя кремнистого железа осуществляется путем внутризеренного скольжения, причем, как это видно из рис. 132, ж, полосы скольжения в кремнистом железе  [c.230]

Алюминиевый сплав 22I9-T81. Как материал для эксплуатации при низких температурах, этот сплав обладает прекрасным комплексом свойств. При понижении температуры до 20 К пределы прочности и текучести при испытании на одноосное и двухосное растяжение, а также модуль упругости монотонно возрастают. Относительное удлинение при этом также увеличивается, за исключением испытания на двухосное растяжение 1 1. Кроме того, сплав при низких температурах обладает значительным сопротивлением распространению трещины. И наконец, в изученном интервале температур мало меняется интенсивность деформационного упрочнения. Это обусловливает неизменность отношения предела прочности к пределу текучести.  [c.65]

Настольные машины для испытания на растяжение с электромеханическим приводом фирмы Instron (Англия) мод. 1026 (диапазон нагрузок от 0,1 Н до 5 кН) и 1101 (диапазон нагрузок от 0,02 Н до 1 кН) снабжены механизмом для создания циклического нагружения как при заданных напряжениях, так и при заданных деформациях, с различными частотами и амплитудами, с записью петли гистерезиса. Машины могут быть укомплектованы интегратором, позволяющим вычислить площадь диаграммы деформации при растяжении и площадь петель гистерезиса при циклическом нагружении, термостатом и нагревательной печью для испытания при повышенных и пониженных температурах.  [c.164]

Об устойчивости остаточных напряжений во вре.мени можно судить по косвенным показателям, например, как это сделано в работах И. В. Кудрявцева, по сохранению с течение.м времени эффекта этих напряжений в усталостной прочности стальных деталей. В этих работах на опытах с образцами из углеродистой стали марок 40 и Ст. 5 показано, что длительное вылеживание (в течение 1—2 лет) не приводит к понижению их усталостной прочности, а следовательно, и к снятию остаточных напряжений это положение подтверждено испытаниями образцов, подвергавшихся еще более длительному вылеживанию (в течение 4 лет). Имеются аналогичные результаты, полученные на образцах после 10-летнего вылеживания. Показано также влияние переменных нагружений на устойчивость остаточных напряжений. Была использована зависимость между пределом пропорциональности при растяжении стальных образцов и остаточными напряжениями в них. Исследования проводились на образцах из углеродистой стали марок 40 и Ст. 5. Показано, что величина остаточных напряжений может снижаться под влиянием усталостной тренировки. Но это уменьшение, происходящее в начальном периоде тренировки, имеет место только при напряжениях, больших 0,9 предела выносливости данного материала.  [c.224]

Толстолистовая качественная углеродистая горячекатаная сталь (ГОСТ 1577—53). Листы и полосы должны изготовляться из углеродистой стали по ГОСТу 1050—60. Размеры и допускаемые отклонения листов толщиной до 60 мм по ГОСТу 5681—57. Свойства листов, поставляемых в нормализованном состоянии, приведены в табл. 16 при толщине листа более 20 мм допускается понижение относительного удлинения на 0,25% (абсолютных) на каждый миллиметр увеличения толщины, но не более чем на 2% — для листов толщиной до 32 мм и на 3% — более 32 мм. Для листов, поставляемых в отожженном или высокоотпущенном состоянии, допускается снижение предела прочности при растяжении на 4 кПмм" (39,2 Мн м ) против норм, указанных в табл. 16, при условии повышения норм относительного удлинения. Листы испытывают на загиб на 180° в холодном состоянии из стали марок 10 и 15 — до соприкосновения сторон из стали марки 20 — с прокладкой, равной толщине листа из стали марок 25, 30 и 35 — с прокладкой, равной двойной толщине листа. При испытании на загиб листов толщиной более 20 мм толщина прокладки увеличивается против указанной на толщину листа.  [c.55]

Указанные испытания на растяжение производятся по методам, излоя ен-ным в ГОСТ 1497—ТЗ, на цилиндрических и плоских образцах, согласно формам и размерам, установленным в том же стандарте. Испытания на растяжение при повышенных температурах (до 1200° С) установлены ГОСТ 9631—73, при пониженных (О-i—100 С) —ГОСТ 11150—75, на длительную прочность — ГОСТ 10145—62, тонких листов и лент (до 4 мм)—ГОСТ 11701—66, труб— ГОСТ 10006—73, проволоки — ГОСТ 10446—63, арматурной стали — ГОСТ 12004-66.  [c.6]

Волокнистое строение сталй после горячей обработки приводит к резко выраженной анизотропии свойств, тем большей, чем больше степень деформации. Образцы, вырезанные поперёк волокна, показывают при испытании пониженные механические свойства по сравнению с образцами, вырезанными вдоль волокна. Направление волокна сказывается преимущественно на пластичности и вязкости стали (при определении сопротивления стали разрушению при растяжении можно обнаружить в поперечных образцах также пониженную прочность) [12]. При горячей механической обработке следует стремиться располагать волокно металла параллельно конфигурации детали.  [c.325]

Нестабильность структуры стали ускоряет процесс ползучести. Так, сталь, закаленная на мартенсит и отличающаяся высокой прочностью при испытании на растяжение при комнатной и повышенной температурах, хара ктеризуется низким пределом ползучести и пониженной жаропрочностью. В процессе ползучести такой стали происходит распад мартенсита (пересыщенного раствора углерода в а-железе), ускоряющий пластическую деформацию вследствие того, что при распаде мартенсита повышается диффузионная подвижность атомов.  [c.86]

Учитывая общую тенденцию перехода к межкристаллитному разрушению с увеличением температуры, длительности выдержки и понижением амплитуды пластической деформации, нельзя отрицать значение ползучести материала. Например, в испытаниях стали 304 по стандарту ASTM при 593° С независимо от окружающей среды преобладает межкристаллитное разрушение в режимах с выдержкой при растяжении и внутризеренное — с выдержкой при сжатии [52]. Результаты же экспериментов в вакууме и на воздухе недостаточно согласуются с данными по повышенной (или по крайней мере равной) долговечности при изгибе по сравнению с растяжением и сжатием, так как следовало бы ожидать обратного соотношения вследствие наиболее благоприятных условий для протекания процессов окисления в поверхностных слоях при изгибе. Кроме того, в испытаниях с выдержкой длительностью 30 мин разница между долговечностью в вакууме и на воздухе была существенно ниже, чем при непрерывном циклировании [78].  [c.50]

Сопоставляя усталостную прочность сплавов Ti—5А1—2,5Sn (типа ВТ5-1) и Ti—6А1—4V (типа ВТ6) в листах толщиной 4 мм и кованых прутках диаметром 12—18 мм авторы работы [119] приходят к выводу, что листовой материал, обладающий более измельченной структурой, имеет выше предел усталости, хотя и показывает большой разброс данных. Этот разброс можно объяснить травлением листов, что резко действует на усталостную прочность. Понижение усталостной прочности при огрублении макроструктуры было получено и для сплава АТЗ. В работе [73] сопоставлялись две характерные структуры теплопрочных сплавов ВТЗ-1 и ВТ18 мелкозернистая и пластинчатая. В условиях пульсирующего циклического растяжения при 20° С оказалась лучшей мелкозернистая структура при 450° С и асимметричном циклическом растяжении обе структуры стали равноценными при 600° С и асимметричном циклическом растяжении у сплава ВТ18 оказалась лучшей уже пластинчатая структура. Эти опыты показали на необходимость оценки влияния структуры конкретных условий испытания.  [c.147]


И определилась с помощью низкотемпературной дифференциальной сканирующей калориметрии. Калориметрические измеренин проводили в интервале —153 277°С, скорость нагрева или охлаждения составляла 10°С/мин. Длн изме-раний использовались образцы размерами 3X3X2 мм и сечением 3X2 мм. Точку определяли как точку пересечения линии максимального наклона нарастающей ветви пика выделения тепла при понижении Т и базовой линии. Для испытаний на растяжение использовались проволочные образцы 1X50 мм (рабочая длина 30 мм), испытания проводились на машине типа "Инстрон" при 19 °С и 145 °С, скорость деформации составляла 0,02 мм" .  [c.80]

При кратковременных статических испытаниях в условиях комнатной, повышенной и пониженной температуры базовые параметры Е и т можно получить при растяжении (или сжатии) стандартных гладких цилиндрических или плоских образцов с регистрацией диаграммы деформирования при этом необходимо обеспечение погрешностей измерения напряжений на уровне 1 %, а деформаций на уровне 2 %. Вместе с тем действующие стандарты не предусматривают опредаление параметра т (или Е1 ), в связи с этим ниже приведены зависимости между этими параметрами и стандартными характеристиками. механических свойств. При отсутствии прямых экспери-ментальных данных о величинах используют аналогичные связи.  [c.135]


Смотреть страницы где упоминается термин см Испытания на растяжение при пониженных : [c.32]    [c.50]    [c.196]    [c.150]    [c.479]    [c.11]    [c.247]    [c.274]    [c.167]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Испытания на растяжение при пониженных температурах (ГОСТ

Испытания на растяжение при при пониженной температуре — Определяемые характеристики

Испытания при понижен

Физические Растяжение - Испытание при пониженны

Шум Понижение



© 2025 Mash-xxl.info Реклама на сайте