Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение Торможение

Сопла и диффузоры. Специально спрофилированные каналы для разгона рабочей среды и придания потоку определенного направления называются с о-п л а м и. Каналы, предназначенные для торможения потока и повышения давления, называются диффузорами. Техническая работа в них не совершается, поэтому уравнение (5.4) приводится к виду  [c.45]

Экспериментальное исследование зависимости коэффициента торможения Л1т=Тт/тг от режимных и геометрических факторов проведено в Л. 21, 332, 333]. Первое систематическое изучение этого вопроса с целью раскрытия обш,его критериального уравнения применительно к каскадно расположенным сетчатым тормозящим элементам выполнено в (Л. 332, 335]. Основные опыты проведены на полупромышленной установке, оборудованной отсечными шиберами с быстродействующим пневмоприводом на границах нижней камеры. Время, определенное для различного числа групп тормозящих элементов, было приведено при прочих равных условиях к одному постоянному числу групп /1 = 6 с ошибкой 3—7% по формуле  [c.92]


Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]

Законы (113) и (116) могут быть обусловлены и смешанным контролем процесса внутренней (транспорт реагентов через пленку продукта коррозии металла) и внешней (транспорт окислителя из объема коррозионной среды к поверхности этой пленки) массо-передач при соизмеримости их торможений, которое обнаруживается по влиянию скорости движения газовой среды в определенном ее интервале на кинетику окисления некоторых металлов при достаточно высокой температуре (рис. 38 и 39).  [c.65]

Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок BE на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко,)обр DEF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных.  [c.197]


Таким образом, в граничном слое Прандтля при наличии в нем градиента концентрации массоперенос осуществляется двумя разными параллельно протекающими путями. Суммарная скорость процесса массопереноса определяется скоростью протекания каждого элементарного процесса переноса. Если, однако,торможение одного из этих параллельных процессов значительно меньше торможения другого, то суммарная скорость массопереноса определяется в основном скоростью этого наименее заторможенного, т. е. быстрого, процесса переноса. Скорость конвективного массопереноса в граничном слое Прандтля снижается по мере уменьшения скорости движения v в нем жидкости (см. рис. 143) и его роль в определении суммарной скорости массопереноса тоже уменьшается, а роль молекулярной диффузии возрастает. Начиная с какого-то расстояния от твердой поверхности б молекулярный перенос вещества становится преобладающим по сравнению с конвективным переносом, который преобладает в части слоя Прандтля (77 — б).  [c.209]

Пассивность — это состояние относительно высокой коррозионной стойкости, вызванное торможением анодной реакции ионизации металла в определенной области потенциалов.  [c.59]

Для экспериментального определения замедления троллейбуса применяется жидкостный акселерометр, состоящий из изогнутой трубки, наполненной маслом и расположенной в вертикальной плоскости. Определить величину замедления троллейбуса при торможении, если при этом уровень жидкости в конце трубки, расположенном в направлении движе- ц  [c.315]

На практике встречаются такие случаи, когда на основании полученных выше формул динамические напряжения найти нельзя. К числу таких задач может быть отнесена, например, задача об определении напряжений в стальном канате, поднимающем груз Q со скоростью о при внезапном торможении подъемника (рис. 586).  [c.633]

При централизованном управлении обеспечивается выполнение заранее установленной программы, независимой от положения звеньев тех или иных механизмов. Такое управление осуществляется в функции времени программным управлением. Система механизмов при программном управлении функционирует достаточно надежно, но при ее проектировании предусматривают определенные предохранительные устройства, гарантирующие выключение механизмов, торможение или останов двигателей при перегрузках или аварийных ситуациях. При таком управлении команды подаются от распределительных валов, командоаппаратов или с помощью пультов.  [c.480]

Определение пути при торможении. Торможение начинается при скорости поступательного движения и = и, и моменте М = Л/,, а заканчивается при v = 0,9l.  [c.274]

Для определения времени торможения применим теорему об изменении количества движения.  [c.322]

Задаваясь конструктивно радиусом стакана, размерами с, h, а, b, I я выбрав материалы стакана и грузиков, получаем два уравнения для определения массы грузиков т и силы пружины F . Далее по уравнению (31.18) можно построить характеристику регулятора ш = ш(Ур), которая будет проходить через точки В м С (рис. 31.9). Точка D, соответствующая пересечению характеристик, дает угловую скорость при которой регулятор начинает торможение.  [c.398]

Каков же механизм, приводящий к возникновению тормозящей силы, выражаемой соотношением (66) Это соотношение относится к некоторому идеализированному случаю, который можно реализовать лишь при определенных условиях. Омическое электрическое сопротивление приводит к затуханию, или торможению, которое выражается таким же образом, как и (66). Падение напряжения Vr на идеальной катушке сопротивления по закону Ома равно  [c.220]

Мы не занимаемся здесь вопросом об определении самого движения дислокаций по приложенным к телу силам. Решение этого вопроса требует детального изучения микроскопического механизма движения дислокаций и их торможения на различных дефектах, которое должно производиться с учетом фактических данных о реальных кристаллах.  [c.165]

Методы, указанные в предыдущем параграфе, позволяют исследовать характер спектра рентгеновского импульса даже в том случае, когда импульс является белым , т. е. дает сплошной спектр. Такой характер имеет спектр рентгеновских лучей, получающихся в обычных условиях в рентгеновской трубке при торможении электронов ударами об анод. Изменение скорости электрона происходит при этом случайным путем, и образующееся излучение представляет совершенно неправильный импульс, эквивалентный совокупности разнообразных, длин волн. Однако наряду с такими импульсами появляется и гораздо более монохроматическое излучение. При бомбардировке анода электронами определенной скорости наблюдается следующее явление при некоторой их скорости, величина которой определяется веществом анода, последний становится источником  [c.412]


Уточнили также и значение времени жизни я -мезонов, которое было измерено методом сравнения количества медленных я—мезонов на разных расстояниях от мишени, а также прямым методом определения промежутка времени между остановкой я+-мезона и его распадом. В этом методе момент остановки я+-мезона и момент его распада обнаруживались по возникновению импульса в сцинтилляционном кристаллическом счетчике. Импульсы образуются за счет энергии, которая выделяется в процессе быстрого (IO-12 сек) торможения медленного я+-ме-зона и за счет энергии (я—ц)-распада, и регистрируются осциллографом. Так как скорость развертки электронного луча осциллографа известна, то по расстоянию между импульсами можно было определить время жизни я+-мезона. Одновременно в этом опыте измерялось время жизни 1 +-мезона по расстоянию на экране осциллографа между импульсами, образовавшимися в счетчике в момент (я— j,)-распада и ( j,—е)-распада. Из этих и других, более поздних измерений были получены следующие значения времени жизни п-- и ц -мезонов  [c.140]

Истинная температура обтекаемой газом поверхности обычно отличается от температуры торможения. Для определения температуры иоверхности пользуются следующей формулой  [c.21]

При сверхзвуковом течении, для которого формула (16) также пригодна, возможны следующие режимы. Если при заданной начальной скорости К приведенная длина меньше максимальной (Х<Хкр), то в конце трубы получается сверхзвуковое течение (Яг > 1). Если приведенная длина равна максимальной (х = Хкр)> то скорость в конце трубы равна критической (Яг = 1). Если же приведенная длина, вычисленная по формуле (17), получается больше максимальной, определенной по формуле (18) при заданном значении приведенной скорости в начале трубы Яь то плавное торможение сверхзвукового потока на протяжении всей трубы невозможно в некотором сечении трубы произойдет скачок уплотнения, за которым установится ускоренное дозвуковое течение.  [c.189]

Используя связь между температурой торможения и скоростью (124), найдем следующее алгебраическое уравнение для определения относительной скорости на границе ламинарного подслоя  [c.325]

Интегральные кривые этого уравнения показаны на рис. 6.41 для А =1,4. Для определения направления процесса при течении газа в канале используем уравнение энергии (180). Если в канал поступает газ, температура торможения которого ниже температуры стенки (0< 1), то газ будет нагреваться dQ/dx>0)  [c.356]

Элементарный расчет сопла Лаваля заключается в определении его основных размеров по заданному расходу, параметрам торможения и значению скорости на срезе сопла.  [c.429]

Как вытекает из уравнения Гюгонио, торможение дозвукового потока должно осуществляться в расширяющемся канале (диффузоре), подобно тому как происходит торможение несжимаемой жидкости (см. п. 6.9). Основным вопросом проектирования дозвукового диффузора является определение величины потерь.  [c.430]

Определите параметры газа в точке полного торможения за прямым скачком уплотнения, рассматривая движение за ним как поток несжимаемой среды. Скорость воздуха перед скачком У = 8100 м/с. Сравните полученные значения давления, плотности и температуры с их значениями, найденными обычным расчетом с учетом диссоциации и сжимаемости газа за скачком. При определении параметров газа непосредственно за скачком уплотнения используйте исходные данные и решение задачи 4.58.  [c.106]

Определение аэродинамических характеристик с учетом интерференции осуществляется для летательных аппаратов как плоской конфигурации (типа корпус — горизонтальное крыло ), так и плюс- или крестообразной формы в потоке без крена и при крене. При этом достаточно подробно изложены методы расчета распределения давления по корпусу и крылу (оперению) и суммарных аэродинамических коэффициентов. Такие расчеты даны с учетом сжимаемости потока, его скоса и торможения от впереди расположенных частей летательного аппарата. При этом принимается во внимание влияние У-образности крыла, его расположения вдоль корпуса и формы в плане, а также наличия развитого пограничного стоя.  [c.593]

Между расходом G и давлением торможения инжектируемого вещества ро существует определенная связь. Поскольку роу (при постоянных ToJ и 5ау), то все сказанное о влиянии расхода Су относится и к давлению Роу. Поэтому одним из критериев, определяющих коэффициент усиления, является отнощение Ро]/р1, где р — давление в сопле перед областью отрыва.  [c.342]

Измерение влаокности с помощью определения торможения нейтронов. Используется высокий тормозной эффект нейтронов на ядерах равной массы.  [c.213]

Она дает результаты максимально на 30% завышающие расчеты по (5-37). Данные по теплообмену во встречных струях [Л. 57, 212], а также данные по нротивоточ-ной торможенной газовзвеси, рассматриваемые в последующем разделе, подтверждают представления о снижении Nut с повышением концентрации сверх определенной величины. Следовательно, различные,данные, полученные при нисходящем и восходящем прямотоке, а также при противотоке, указывают на качественную спрдведливость предлагаемой закономерности независимость теплообмена от р в нестесненной области и снижение теплообмена при р>3,5 10 . Однако очевидна необходимость постановки специальных исследований по межкомпонентному теплообмену в диапазоне р = 170  [c.170]

В работах (Л. 169, 219а, 284а] не изучено влияние концентрации частиц на теплообмен при их механическом торможении. Отсутствуют расчетные зависимости для определения времени теплообмена и, следовательно, истинной концентрации насадки. Недостаточен анализ влияния многих характеристик тормозящих элементов на теплообмен и надежность некоторых опытных данных (например, в Л. 219а] охлажденные водой шарики поступали в камеру нагрева время их движения оценено визуально и пр.).  [c.173]


В городском цикле движения автомобиля до 50% времени двигатель работает на токсичных нетяговых режимах, холостом ходу и в режиме торможения. Возможно полное отключение двигателя на данных режимах, как это сделано в так называемой системе старт—стоп , разработанной фирмой Фольксваген [30]. Между двигателем и коробкой передач последовательно расположено стартовое сцепление /, маховик 2 и обычное сцепление 3 (рис. 34). При переходе двигателя с тяговых режимов на нетяговые автоматически отключаются обе муфты сцепления, выключается зажигание двигателя, маховик вращается с первоначальной скоростью, имеется определенный запас кинетической энергии. При необходимости дальнейшего разгона авто-.мобиля включается стартовое сцепление, и двигатель запускается от вращающегося маховика. Экономия топлива в городском цикле достигает 25%, а выбросы СО и СпНт уменьшаются пропорционально доле выбросов нетяговых режимов в балансе ездового цикла.  [c.63]

Г1( ходу поляризационной кривой легко определить, насколько сильно тормозится анодный процесс. На рис. 15 представлены две анодные поляризационные кривые, характеризующие разное протекание анодного процесса. У обеих кривых имеется общий участок, соответствующий активному анодному растворению металла, но дальнейший их ход различен. Кривая I описывает сравиитслык) свободно протекающий процесс активного анодного растворения металла, и ее наклон к оси абсцисс невелик. Кривая // описывает более сложный случай, когда анодный процесс, протекающий с незначительным торможением в некотором интервале потенциалов, при достижении определенного значения 3  [c.35]

Эти условия известны из механики однофазной среды. Отметим, что для получения простейшего нетривиального решения необходим ряд дополнительных условий. Так как соударения частиц не учитываются и поскольку само определение ламинарного движения исключает столкновения частиц со стенкой, частицы, попавшие на стенку, должны скользить вдоль нее. Подробный анализ движения частиц со скольжением вдоль стенки требует знания законов сухого трения. Простейшее допущение состоит в том, что это сухое трение не учитывается, но учитывается торможение частиц жидкостью, которая замедляется у стенки до нулевой скорости. Уравнение (8.33) для условий на стенке (Ур = О, и = 0) дает (дир1дх) = —Р. Интегрируя, получим  [c.347]

Нужно отметить, что истинное давление, которое получается при торможении струи газа, может существенно отличаться от полного давления, определенного но формуле (68). Объясняется это тем, что в действительности торможение струи часто протекает не по идеальной адиабате, а с более или менее существенными гидравлическими потерями. Например, в диффузоре при дозвуковом течении газа уменьшение скорости обычно сопровождается вихреобразованиями, вносящими значительные сопротивления в газовый поток. При торможении сверхзвукового потока почти всегда образуются ударные волны, дающие специфическое волновое сопротивление. Итак, действительное давление в за-торможенно11 струе газа обычно ниже полного давления набегающей струи.  [c.32]

На применении уравнения Бернулли основан пневматический способ определения скорости потока, который состоит в том, что в поток вводится насадок (рис. 1.5), состоящий из двух трубок. Открытое отверстие одной из этих трубок (i) размещается в носовой части насадка (перпендикулярно к потоку), а отверстия второй трубки (2) расположены в боковой поверхности насадка (вдоль потока) при дозвуковой скорости замедление струи газа от встречи с насадком проходит 6ei3 каких-либо потерь, так как трение и вихреобраэование возникают уже на боковой поверхности насадка, т. е. после того, как струя минует область своего полного торможения, размещающуюся перед самым носиком насадка. По этой причине в первой трубке создается давление, почти в точности равное полному давлению набегающего потока во второй трубке, если ее входное отверстие достаточно удалено от носика, устанавливается давление, близкое к статическому давлению потока. Трубки J и 2 сообщаются с манометром, измеряющим давление. Отношение измеренных давлений  [c.33]

Независимо от знака величины Az из двух последних соотношений видно, что численное значение функции г(Хз) будет лежать между величинами z( i) 2 и z(A2) 2. Исключая как не представляющий интереса случай = Яг = 1 w = №2 = Wz), устанавливаем, что для любых начальных условий ири 0 = 1 из уравнения (37) определяется значение г(Яз)>2, которое соответствует двум действительным значениям Яз, отличающимся от единицы. Таким образом, при равных температурах торможения газов звуковой режим течения смеси на выходе из камеры невозможен. Если температуры торможения смешивающихся газов различны (0= 1), то из уравнения количества движения, наряду с действительными решениями z(X3)>2, при определенных сочетаниях начальных параметров газов могут быть найдены решения 2(Яз)< 2, соответствующие физически невозможным режимам течения и указывающие на то, что принятые значения скорости и расхода эжектируемого газа не могут быть реализова-  [c.533]

Допуская погрешность в определении температуры потока на 3%, можно не считаться с разогревом газа вследствие торможения до М = 0,4 (для воздуха при нормальной температуре это соответствует скорости зЬм1сек), допуская погрешность в 10% — до М = 0,7 (скорость воздуха 230 м сек).  [c.380]

Как вытекает из уравнения Гюгонио, торможение дозвукового потока должно осуществляться в расщиряющемся канале (диффузоре), подобно тому как происходит торможение несжимаемой жидкости (см. 9, гл. 6). Основным вопросом проектирования дозвукового диффузора является определение величины потерь. Эти потери определяются вихревой структурой вязкого газа в диффузоре и, в частности, наличием отрывов пограничного слоя от боковых стенок. Поэтому расчет таких потерь основывается на теории пограничного слоя с учетом сжимаемости газа (см. [6]).  [c.454]

Действительное обтекание характеризуется торможением потока перед оперением, которое необходимо учитывать при определении аэродинамических параметров. Степень такого торможения можно охарактеризовать средним коэффициентом торможения = qlq , где екорост-цой напор д — /грМ /2 находится по некоторой осредненной величине числа М1 возмущенного потока перед оперением. Полагая, что давления в возму-  [c.166]


Смотреть страницы где упоминается термин Определение Торможение : [c.120]    [c.138]    [c.303]    [c.68]    [c.168]    [c.124]    [c.24]    [c.202]   
Машиностроение Энциклопедический справочник Раздел 4 Том 11 (1948) -- [ c.18 ]



ПОИСК



5.206— 211 — Торможени

Торможение



© 2025 Mash-xxl.info Реклама на сайте