Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сгорание неполное

Правильно организованное сжигание топлива обусловливает высокую полноту сгорания. Неполное сгорание топлива в факеле приводит к перерасходу топлива и к дожиганию его в шлаковиках и регенераторах, что ускоряет их износ. Полное сгорание обеспечивают избыточным расходом воздуха (в 1,15—1,20 раза больше теоретического), однако чрезмерный избыток воздуха приводит к уменьшению к.п.д. печи.  [c.245]


При недостатке кислорода сгорание неполное  [c.39]

Это уравнение, поскольку оно оперирует не с величинами теплотворных способностей, а с величинами полных теплосодержаний, годится как для полного, так и для неполного сгорания. Неполное сгорание может произойти из-за недостатка кислорода, а также вследствие диссоциации.  [c.181]

Полное сгорание топлива является условием наиболее экономичной работы тепловых установок. Условиями полного сгорания являются хорошее смесеобразование горючего с окислителем, достаточные температурные условия процесса и надлежащая подготовка топлива к сгоранию. Неполное сгорание топлива имеет место при диссоциации углекислого газа СО3 и водяного пара Н О в условиях высоких температур (более 1500° С) при недостатке окислителя (воздуха) и при  [c.223]

В слоевых топках высоту слоя стараются держать равной высоте кислородной зоны или большей ее. Для дожигания продуктов неполного сгорания (Н2, СО), выходящих из слоя, а также для дожигания выносимой из него пыли в топочный объем над слоем подают дополнительный воздух.  [c.138]

Большая концентрация топлива в плотном слое создает развитую поверхность реагирования, поэтому в единице объема самого слоя выделяется огромное количество теплоты. Однако необходимость дожигания выносимых из слоя продуктов неполного сгорания (СО, Нг) и мелких топливных частиц, а также охлаждения газов в топке до температур, при которых затвердевают уносимые ими зольные частицы (1000—1100 С в зависимости от плавкости золы), заставляет предусматривать над слоем достаточно большой топочный объем, тогда Цу — = 2504-450 кВт/м1  [c.140]

Сажа, углеводороды, оксид углерода и альдегиды образуются в результате неполного сгорания топлива, связанного либо с недостатком кислорода в рабочей смеси, либо с плохим смесеобразованием. Первое особенно характерно для бензиновых двигателей, когда карбюратор вырабатывает богатую смесь на режимах холостого хода и торможения. Дизели всегда работают со значительным избытком воздуха, поэтому выброс СО у них невелик, зато в отработавших газах много углеводородов, и особенно сажи, обусловливающих дымность газов.  [c.183]

Если при погасании факела топливовоздушная смесь продолжает поступать в топку, то она, вытесняя продукты сгорания, накапливается в объеме топки и соприкосновение ее с любым источником зажигания (раскаленной обмуровкой в месте ее неполного экранирования, налипшим шлаком, преждевременно зажженным и введенным в топку запальником) приведет к взрыву. Поэтому в случае погасания факела следует прекратить  [c.217]


Как видно, состав ОГ рассматриваемых типов двигателей существенно различается прежде всего по концентрации продуктов неполного сгорания, а именно окиси углерода, углеводородов п сажи.  [c.6]

Снижение выбросов продуктов неполного сгорания при одновременном повышении максимальной температуры цикла сопровождается ростом выбросов окислов азота. Учитывая весомость NOx в балансе токсичных выбросов, необходимо в некоторых случаях пойти на заведомое ухудшение процесса сгорания с целью снижения максимальных температур цикла, определяющих образование окислов азота. Для этого применяют рециркуляцию — перепуск во впускную систему части ОГ, которые попадают в камеру сгорания как инертный заряд, обладающий высокой теплоемкостью (в 1,5 раза выше, чем воздуха). При этом часть теплоты сгорания топлива дополнительно затрачивается на нагрев инертной массы, тем самым снижается максимальная температура цикла и образование ЫО .  [c.45]

Снижению выбросов продуктов неполного сгорания, улучшению экономичности способствует обеднение смеси, однако работа многоцилиндрового бензинового двигателя при а> 1,15 практически невозможна из-за появления пропусков воспламенения в отдельных цилиндрах. Эффективное сгорание бедных смесей (а> 1,3) в цилиндрах может быть обеспечено расслоением заряда, при котором воспламенение и начальная стадия процесса сгорания происходят в зоне обогащенной, а последующее — в зоне бедной смеси (рис. 21). Расслоение смеси препятствует образованию и окислов азота. В первой стадии сгорания этому способствует недостаток кислорода, во второй — относительно низкая температура горения.  [c.45]

В системе выпуска двигателей происходят реакции окисления окиси углерода и углеводородов ОГ с избыточным кислородом. Эти процессы при относительно невысоких для реакций в газовой среде температурах (300. .. 800 С) проходят с малой скоростью. Для ускорения протекающих реакций используют катализаторы. Механизм действия катализатора сложен. В основе окислительных процессов, протекающих на катализаторах, лежат процессы диссоциативной адсорбции кислорода и продуктов неполного сгорания, вследствие чего скорость их химического взаимодействия резко возрастает.  [c.64]

Для бензиновых двигателей характерна низкая концентрация свободного кислорода в ОГ при работе с коэффициентом избытка воздуха а 1. Именно режимы с а < 1 дают основную долю массовых выбросов продуктов неполного сгорания топлива в испытательном цикле.  [c.66]

В системе выпуска двигателя продолжается процесс окисления продуктов неполного сгорания топлива, происходящий в цилиндрах двигателя. Этот процесс можно интенсифицировать созданием в системе выпуска благоприятных для этого условий — повышением температуры и времени реакции, подачей в зону окисления дополнительного воздуха.  [c.76]

Важным условием ограничения выбросов продуктов неполного сгорания топлива является поддержание оптимального теплового состояния двигателей в осенне-зимний период. Для двигателя ЗИД-130 понижение температуры охлаждающей жидкости с 85 до 40 ""С приводит к росту выбросов СО на 15. .. 35% и С Нп, — в 1,25...2,8 раза. Увеличение расхода топлива при этом составит 25. .. 40%.  [c.96]

Определенность движения механизма может обеспечиваться кинематическими (конструктивными) средствами (механизмы с полными связями) или средствами динамики (механизмы с неполными связями). К механизмам первого вида относится, например, механизм двигателя внутреннего сгорания, к механизмам второго вида — механизм вибрационного конвейера.  [c.9]

Пример. В качестве примера, иллюстрирующего применение закона Гесса, вычислим тепловой эффект реакции неполного сгорания углерода (при р= 981 бар и /= 25 С)  [c.488]

Теплота, теряемая вследствие неполного сгорания топлива (кДж/с), определяется опытным путем.  [c.172]

Потери теплоты (%) от неполного сгорания топлива  [c.178]

Потеря теплоты от химической неполноты сгорания имеет место в том случае, если в дымовых газах появляются продукты неполного горения (СО, Нг и др.). Химическая неполнота сгорания увеличивается при недостаточном количестве воздуха в топке, недостаточно интенсивном перемешивании воздуха с горючими газами в топке, низкой температуре в топке или недостаточно развитом объеме топочной камеры.  [c.244]


В качестве примера, иллюстрирующего применение закона Гесса, произведем вычисление теплового эффекта реакции неполного сгорания углерода (при р=0,981 бар и i = 25 )  [c.307]

На практике количество воздуха, подаваемого в камеру сгорания, берут несколько больше теоретически необходимого, что приводит к понижению температуры горения. Избыток воздуха, составляющий в зависимости от типа топлива и способов его сжигания от 1- 1,2 до 2, требуется для обеспечения полного сгорания топлива в том случае, когда перемешивание топлива с воздухом является неполным (как это обычно имеет место в действительных условиях).  [c.317]

Цикл газотурбинной установки с неполной регенерацией тепла изображен на рис. 12-39. Здесь процесс 25 соответствует изобарическому нагреву сжатого воздуха в регенераторе, а процесс — изобарическому охлаждению продуктов сгорания в регенераторе.  [c.411]

Если в уходящих газах содержатся горючие газообразные элементы (Hj, СН и др.) или продукты неполного сгорания СО, то имеют место потери с химическим недожогом топлива. Величина этих потерь определяется количеством и теплотой сгорания указанных горючих элементов.  [c.36]

Композитные топлива с повышенным содержанием горючего используются в ракетных двигателях с воздушным форсажем. В настоящее время широко используются композиты палибутадиен/А1/ NH4 IO4 и полибутадиен/В/МН4СЮ4. Эти топлива быстро и полностью сгорают на воздухе, но в отсутствие дополнительной подачи кислорода сгорание неполное. Под водой такие вещества менее опасны, чем сбалансированные композиты. Прочие свойства композитов с повышенным содержанием горючего аналогичны представленным в табл. 167 свойствам композитных топлив на основе полибутадиена с добавками алюминия.  [c.495]

Повышенная вязкость ухудшает распыливание топлива, ведет к неполному сгоранию, дымлению и образовакию отложений в двигателе (в том числе на головке форсунки). Пониженная вязкость ведет к подтеканию форсунок, нарушению дозировки топлива и увеличению износов топливного насо са высокого давления. Утяжеленный фракционный состав топлива вызывает недоиспаре ние в камере сгорания, неполное сгорание и дымление  [c.247]

Прежде всего по //,/-диаграмме можно определить температуру, которую имели бы продукты сгорания при условии, что вся теплота горения затрачивается только на их нагрев, а теплопотери отсутствуют. Эта температура называется а д и а б а т и о й, поскольку горение осуществляется в адиабатно-изолированной системе, без теплопотерь. Если продуктов неполного сгорания нет, теп-./юта из зоны горения не отводится и сжигание организовано в потоке (практически при p = onst), то в соответствии с уравнением (5..3) количество выделяющейся при сгорании теплоты равно эгггальнпи п[)одуктов сгорания  [c.129]

Элементарный состав автомобильных нефтяных топлив — это углерод, водород, в незначительных количествах кислород, азот и сера. Атмосферный воздух, явл яющийся окислителем топлив, состоит, как известно, в основном из азота (79%) и кислорода (около 21%). При идеальном сгорании стехиометрической смеси углеводородного топлива с воздухом в продуктах сгорания должны присутствовать лишь N-2, СО2, Н.2О. В реальных условиях ОГ содержат также продукты неполного сгорания (окись углерода, углеводороды, альдегиды, твердые частицы углерода, перекисные соединения, водород и избыточный кислород), продукты термических реакций взаимодействия азота с кислородом (окислы азота), а также неорганические соединения тех или иных веществ, присутствующих в топливе (сернистый ангидрид, соединения свинца и т. д.).  [c.5]

Основные токсичные вещества, являющиеся продуктами неполного сгорания топлива — окись углерода, сажа, углеводороды и альдегиды. У двигателей с внешним смесеобразованием, и частности бензиновых двигателя.х, наибольшая доля вредных выбросов приходится на окись углерода, в то время как у двигателей с внутренним смесеобразованием (дизелей) — на сажу. Это объясняется существенным различием организации процессов смесеобразования и сгорания. Если у двигателя с внешним с.месеобразованием процесс горения в цилиндре можно рассматривать как горение гомогенной смеси, то в цилиндрах. тизеля осуществляется гетерогенное сгорание, качества которого зависит от характеристик впрыска топлива, формы камеры сгорания, интенсивности смесеобразования и т. д. При организации малотоксичного рабочего процесса в дизеле необходимо обеспечить полное сгорание топлива по всему объему ка.меры сюрания, а у двигате.теп с внешним смесеобразованием оптимальное соотношение топлива и воздуха в смеси.  [c.10]

Если образование продуктов неполного сгорания топлива определяется в целом несовершенством процесса сгорания, то образование окислов азота — его совершенством, с точки зрени.я эффективности использования энергии топлива. Чем выше максимальная температура цикла тем выше КПД цикла, тем больше обра-  [c.12]

Для ускоренного прогрева двигателя применяют системы обогрева впускного тракта ОГ. На большинстве автомобилей при эксплуатации в зимний период применяют подогрев всасываемого воздуха от впускного коллектора. Для обеспечения устойчивой работы двигателя при значительных колебаниях температуры окружающего воздуха водителю приходится неоднократно включать и выключать подогрев. Если этого не производить, то при поних ении температуры воздуха потребуется обогащать бензовоздушну ю месь, оперируя воздушной заслонкой карбюратора, что неизбежно приведет к перерасходу топлива и значительному возрастанию содержания окиси углерода в отработавших газах. При излишнем подогреве воздуха смесь нерационально обогатится, ухудшится наполнение цилиндров. Устройство автоматического регулирования подогрева и стабилизации температуры всасываемого воздуха обеспечивает постоянство состава смеси, устойчивую работу двигателя на обедненных регулировках с минимальными выбросами продуктов неполного сгорания топлива.  [c.40]


Определенный эффект оказывает правильный выбор типа и передаточных чисел трансмиссии. При выполнении разгона автомобиля двигатель несколько раз переходит от режи.ма холостого хода к режиму полных нагрузок, столько же раз срабатывает ускорительный насос. Экспериментально определено, что на режимах периодического разгона безнаддувный дизель выбрасывает СО на 68%, С Н, -на 50% и сажи — на 100% больше, чем на энергетически эквивалентном установившемся режиме. Применение автоматической гидромеханической передачи благодаря отсутствию жесткой связи в трансмиссии позволяет работать двигателю при разгоне в, одном диапазоне частоты вращения и нагрузок, как правило, при наименьших удельных выбросах продуктов неполного сгорании и расходах топлива (рис. 33), и хотя в гидротрансформаторе наблюдаются дополнительные потери мощности, с точки зрения сни жения выбросов автомобилем его применение оправданно.  [c.63]

Концентрации продуктов неполного сгорания топлива — окиси углерода, углеводородов, альдегидов в ОГ дизелей в 5. .. 10 раз ниже, чем у бензиновых двигателей. Но расход ОГ дизелей выше., чем бензиновых двигателей той же мощности вследствие более вы-еокой степени наполнения цилиндров. Поэтому массовый выброс вредных веществ дизелей сопоставим с выбросами бензиновых двигателей.  [c.73]

Особенности конструкции нейтрализаторов дизелей определяются в основном двумя факторами — большими габаритными размерами реакторов, обусловленными малыми допустимыми потерями давления в нейтрализаторе, особенно для турбонаддувных дизелей при значительно больших расходах ОГ, а также более низкими температурами в реакторе из-за практичеекого отсутствия тепловыделения (изотермический процесс окисления продуктов неполного сгорания в отличие от экзотермического у бензиновых двигателей).  [c.73]

Приведем пример репления термохимических уравнений для вычисления теплового эффекта реакции неполного сгорания твердого углерода в окись углерода. Это количество теплоты не может быть непосредственно измерено потому, что при окислении углерода образуется смссь окислов СО и Oj.  [c.297]

Задача 5.53. Определить потери 1еплоты в процентах от неполного сгорания топлива в шестицилиндровом четырехтактном дизельном двигателе, если среднее эффективное давление р = = 7,2 10 Па, полный объем цилиндра V --=S10 м , объем камеры сгорания К = 7,9 10 м , частота вращения коленчатого вала = 37 об/с, низшая теплота сгорания топлива Ql = = 42 700 кДж/кг, удельный эффективный расход топлива he = 0,250 кг/(кВт ч) и количество теплоты, потерянное от неполного сгорания топлива, бнх = 6,8 кДж/с.  [c.177]

Задача 5.54. Определить потери теплоты в процентах от неполного сгорания топлива в восьмицилинд >овом четырехтактном карбюраторном двигателе, если среднее индикаторное давление/>,=9,5 10 Па, диаметр вд1линдра Л = 0,092 м, ход поршня 5 =0,08 м, угловая скорость вращения коленчатого вала ш = 314 рад/с, механический кпд > = 0,82, низшая теплота сгорания топлива Ql = 44 ООО кДж/кг, удельный эффективный расход топлива Ле = 0,31 кг/(кВт ч) и потери теплоты от неполного сгорания топлива бя.с=47,2 кДж/с.  [c.177]

Задача 5.56. Четырехцилиндровый четырехтактный дизельный двигатель эффективной мощностью N =40 кВт работает на топливе с низшей теплотой сгорания QI-42 400 кДж/кг при эффективном кпд >/е = 0,35. Определить составляющие теплового баланса в кДж/с, если потери теплоты с охлаждающей водой 9охл = 26%, потери теплоты с отработавшими газами г = 30% и потери теплоты от неполного сгорания топлива qs. =5°/o.  [c.178]

Задача 5.58. Двенадцатицилиндровый двухтактный дизельный двигатель эффективной мощностью jVe=300 кВт работает на топливе с низшей теплотой сгорания Q = 42 500 кДж/кг при эффективном кпд rj =0,35. Определить неучтенные потери в кДж/с, если потери теплоты с охлаждающей водой бохл = = 190 кДж/с, потери теплоты с отработавшими газами бг=284 кДж/с и потери теплоты от неполного сгорания топлива (2нх = 42 кДж/с.  [c.179]


Смотреть страницы где упоминается термин Сгорание неполное : [c.727]    [c.16]    [c.43]    [c.45]    [c.19]    [c.264]    [c.113]    [c.298]    [c.197]    [c.172]    [c.177]    [c.32]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.245 ]



ПОИСК



Дожигание продуктов неполного сгорания топлива во втором контуре РПД

Неполное сгорание газа. Реформаторы природного газа

Потери от механической неполноы сгорания

Продукты Состав при неполном сгорании топлива

Расчет неполного сгорания газов вследствие диссоциации

Расчет неполного сгорания топлива

Сгорание неполное полное

Сгорание топлива неполное

Сгорание топлива неполное полное

Химические при неполном сгорании жидкого топлива



© 2025 Mash-xxl.info Реклама на сайте