Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металл статических испытаниях

При статических испытания на растяжение определяют временное сопротивление (а ), предел текучести (а. . agj). относительное удлинение (5), относительное сужение (ч/) основного и наплавленного металлов и сварных соединений.  [c.213]

Когда говорят об испытании конструкции, то имеется в виду испытание на прочность целой машины, ее отдельных узлов или их моделей. Такое испытание имеет целью, с одной стороны, проверку точности проведенных расчетов, а с другой - проверку правильности выбранных технологических процессов изготовления узлов и ведения сборки, поскольку при недостаточно правильных технологических приемах возможно местное ослабление конструкции. Наиболее широко развито испытание конструкции в таких отраслях техники, как самолетостроение и ракетостроение, где в силу необходимой экономии веса вопросы прочности являются наиболее ответственными. При создании новой машины отдельные ее узлы, уже выполненные в металле, подвергают статическим испытаниям  [c.542]


Из приведенных рассуждений вытекают следующие выводы. В случае водородного роста трещин можно выделить три состоя-, ния, которым отвечают три интервала изменения коэффициента К [374, 435]. Первое состояние характеризуется тем, что физикохимические процессы в данной системе металл — водород не обеспечивают выполнение условий начала роста трещины. Этому состоянию соответствует интервал изменения К S К,л, где K,h — пороговый коэффициент интенсивности. Второе состояние характеризуется медленным докритическим подрастанием трещин при Kth < К < /Сн, когда рост трещины тормозится процессами доставки водорода в очаг разрушения. Здесь Кся — критический коэффициент интенсивности в условиях водородного охрупчивания материала. Наконец, третье связано с закритическим ростом трещины при К > Ксн, обеспечиваемым при данном распределении водорода в системе чисто механическим фактором — уровнем нагружения. В последнем случае развитие трещины по своему характеру (но не по микромеханизму роста) близко ее развитию при статических испытаниях в обычных условиях. При этом параметр трещиностойкости по физическому смыслу наиболее близок к характеристике обычной вязкости разрушения Ki (хотя, вообще говоря, ей не тождествен).  [c.326]

Критерием стойкости металлов статической водородной усталости считают максимальное напряжение, ниже которого разрушение не наступает в течение базового времени испытаний в агрессивной среде. Для оценки сопротивления материалов статической водородной усталости можно применять гладкие цилиндрические образцы (рис. 41). При изготовлении образцов механической  [c.89]

Отношение скоростей продольной и поперечной волн зависит от коэффициента Пуассона среды. Поскольку для металлов v да 0,3, получим f/ , яй 0,55 (табл. 1.2). Скорости продольной и поперечной волн можно использовать как пару упругих констант вместо модулей упругости. При экспериментальном определении упругих констант следует иметь в виду, что значения, полученные при статических испытаниях, соответствуют изотермическим условиям, а при акустических (вычисление Е и G с учетом скоростей l и f) — адиабатическим. Отличие составляет около 0,2 %.  [c.9]

Роль данного критерия как оценки эксплуатационной способности материала отмечена в рекомендациях СЭВ P 3642—78. Металлы. Методы испытаний. Определение вязкости разрушения Ki при статическом нагружении и P 4450—74 Металлы. Методы испытаний. Определение раскрытия трещины S при статическом изгибе .  [c.16]


Здесь уместно будет заметить, что интенсивно - ь напряженно-деформированного состояния в процессе резания в силу зависимости положения главных осей от трения, как правило, отличается по величине от интенсивности напряженно-деформированного состояния при обычных статических испытаниях металла. Это обстоятельство существенно затрудняет использование данных статических испытаний при резании.  [c.90]

При ударном испытании на растяжение образцов без надреза из вязких материалов при статических и динамических нагрузках полностью соблюдается закон подобия. Разброс результатов испытаний на удар значительно больше, чем при статических испытаниях. С увеличением скорости деформирования у большинства металлов возрастает сопротивление металла пластической, деформации.  [c.32]

На фиг. 153 представлены кривые, характеризующие изменения механических свойств (процентное возрастание) при снижении температуры от - - 20° до — 70° С для тех же марок стали, что были взяты для испытания на ударную вязкость (см. фиг. 150). Какой-либо зависимости между характеристиками металла при статических испытаниях (на растяжение) и результатами испытаний на удар не отмечается. Процесс испытания на растяжение требует значительного времени, в течение которого образец может заметно изменить перво-  [c.67]

При статическом действии сил некоторые из перечисленных факторов, например, состояние поверхности, не оказывают заметного влияния на прочность металлов. Поэтому механические свойства, определённые при статических испытаниях, не характеризуют сопротивления материала переменным нагрузкам.  [c.70]

Основным критерием качества металла считалась вязкость, которая определялась при статических испытаниях и характеризовалась величиной удлинения или ей подобной. По этому признаку чугун относился к хрупким материалам и рассматривался как сталь, испорченная графитовыми включениями. Согласно схеме, приведённой на фиг. 49 [16], графитовые включения уменьшают прочность  [c.35]

Детали, штампованные из литой заготовки дуралюмина, полученной непрерывным методом отливки, нередко дают трещины в сопряжённых зонах истечения металла и текстуру деформации (фиг. 462, см. вклейку). Например, крыльчатки, показывая при статических испытаниях высокие механические свойства, в процессе экспло.атации нередко преждевременно разрушаются.  [c.460]

Коррозионная усталость, также как и коррозионное растрескивание сталей, является одним из видов разрушений, происходящих при коррозии под напряжением. Коррозионная усталость проявляется при одновременном воздействии на металл коррозионной среды и циклических напряжений и имеет свои особенности, отличающие ее от коррозионного растрескивания. Одна из таких важных особенностей заключается в том, что механический фактор, оказывает при коррозионной усталости более сильное влияние чем при растрескивании. Так, при статическом нагружении металлов ниже предела прочности на разрыв в корро-зионно-инертной среде разрушения не происходит при циклическом нагружении металлов в аналогичных условиях разрушение происходит и именуется усталостью на воздухе. [1091. Коррозионная усталость сталей существенно отличается от усталости на воздухе, в инертных средах или от коррозионного растрескивания. Различие заключается в отсутствии истинного предела усталостной прочности, имеющего место для большинства металлов при испытаниях на воздухе, а также в связи между механическими характеристиками при статическом и циклическом нагружении на воздухе и условным пределом коррозионной усталости, меньшая чувствительность коррозионной усталости к концентраторам напряжений специфический характер разрушения, характеризуемый множеством трещин.  [c.76]

СТАТИЧЕСКИЕ ИСПЫТАНИЯ МЕТАЛЛОВ  [c.190]


Методы статических испытаний на растяжение черных и цветных металлов и изделий из них (с номинальным диаметром или наименьшим размером в поперечном сечении 3,0 мм и более, а для тонких листов и лент толщиной от 0,5 мм) предполагают определение при температурах от 35 до 1200 °С характеристик механических свойств  [c.45]

Стандарт распространяется на черные и цветные металлы и сплавы, а также на изделия из них и устанавливает методы статических испытаний на кручение при температуре 20 °С для определения характеристик механических свойств и характера разрушения при кручении.  [c.46]

Наличие надреза и повышенная скорость деформирования могут перевести металл в хрупкое состояние и выявить его склонность к хрупкому разрушению, т. е. те свойства металла, которые не обнаруживаются при статических испытаниях гладких образцов.  [c.53]

Испытания на усталость применяют, чтобы характеризовать поведение металла в условиях повторно-переменного приложения нагрузки (табл. 2.10). В таких условиях у металлов более низкая прочность по сравнению с прочностью, определяемой при статических испытаниях. Это происходит вследствие того, что под действием большого числа циклов переменных нагрузок в наиболее нагруженном или ослабленном месте металла зарождается и развивается трещина и образуется участок усталостного излома.  [c.65]

Наиболее распространенным видом испытаний механических свойств металлов являются испытания на растяжение. Они дают возможность определить характеристики прочности и пластичности металлов в условиях статического одноосного нагружения. Машины для испытаний оснащены устройствами рычажного (либо индикаторного) типа для записи диаграммы растяжения, т. е. изменений длины образца в зависимости от приложенного напряжения (табл. 2.1).  [c.8]

Поэтому строгого разграничения статического и динамического нагружения в физическом смысле не существует. В данном разделе рассматривается вопрос об испытании металлов при скоростях деформирования и приложения нагрузки, существенно превышающих скорости при обычных статических испытаниях.  [c.273]

ЛИШЬ В ТОМ случае, если бы разрушение балок в действительности происходило или от срезания по площадкам с наибольшими касательными напряжениями, или от разрыва по площадкам с наибольшими растягивающими напряжениями. Опыты, однако, показывают, что даже в лабораторной обстановке нельзя получить разрушений балки от среза или разрыва по площадкам наибольших напряжений. При статическом испытании разрушение балки является обыкновенно следствием недостатка устойчивости стенки или сжатого пояса балки. При повторных нагрузках причиной разрушения явится усталость металла, с которой нужно считаться в точках с большими местными напряжениями . Устойчивость конструкции и возможность явления усталости металла нужно рассмотреть в первую очередь при оценке прочности балки.  [c.414]

К первой группе в соответствии с приведенной выше классификацией относятся методы, основанные на установлении корреляции величин пределов выносливости и характеристик прочности и пластичности металлов, найденных при монотонном увеличении нагрузки, а также методы, основанные на энергетических и других критериях разрушения металлов, позволяющие сформулировать условия подобия разрушения при статическом и циклическом нагружениях и на основе этого построить кривые усталости по результатам статических испытаний.  [c.217]

Когда говорят об испытании конструкции, то имеется в виду испытание на прочность целой машины, ее отдельных узлов или моделей. Такое испытание имеет целью, с одной стороны, проверку точности проведенных расчетов, а с другой — проверку правильности выбранных технологических процессов изготовления узлов и ведения сборки, поскольку при недостаточно правильных технологических приемах возможно местное ослабление конструкции. Наиболее широко развито испытание конструкций в таких отраслях техники, как самолетостроение и ракетостроение, где в силу необходимой экономии веса вопросы прочности являются наиболее ответственными. При со.здаиии новой машины отдельные ее узлы, уже выполненные в металле, подвергаются статическим испытаниям до полного разрушения с целью определения так называемой разрушающей нагрузки. Эта нагрузка сопоставляется затем с расчетной. Характер приложения сил при статических испытаниях устанавливается таким, чтобы имитировались рабочие нагрузки для определенного, выбранного заранее расчетного случая, например для шасси самолета— случай посадки, для крыльев — выход из пике, и т. д.  [c.506]

В области высоких температур (выше 0,5Т пл) при обычных скоростях статических испытаний (е 10 с ) выполняется условие е > > 10 Д [86, 89, 90] (здесь О— коэффициент объемной самодиффузии), и в результате концентрация ступенек на дислокациях и концентрация вакансий в металле превосходят их термодинамически равновесные значения. Если учесть, что скорость диффузии примесных атомов при высоких температурах становится значительной и они уже не сдерживают движение дислокаций, то понятно, почему в данной области температур пластическая деформация происходит за счет миграции вакансий и дис[)фузни вдоль дислокаций, а энергия активации процесса определяется лишь энергией активации миграции вакансий [8]. Конкретные механизмы пластической деформации в этой области и ограничивающие их факторы достаточно подробно рассмотрены в разделе, посвященном картам механизмов деформации [31, 32].  [c.45]


Для того чтобы проследить влияние обкатки на статическую прочность, были испытаны образцы, половину длины рабочей части которых подвергали обкатке при усилии Р= 1000Н, а половина оставалась в исходном состоянии. После разрушения на участке образца с исходным состоянием поверхности наблюдался четко выраженный деформационный рельеф, связанный с выходом на поверхность пластических сдвигов, в то время как наклепанная часть образца оставалась гладкой, без следов деформации (рис. 123). Аналогичный образец был растянут до уровня 0,98 Од, при этом он получил среднюю деформацию около 4 %. Измерение деформаций различных участков образца на его рабочей длине показало, что на части образца с исходным состоянием поверхности величина относительного удлинения составила 7 %, а на обкатанном участке 1 %. Таким образом, результаты статических испытаний однозначно показали, что участки с обкатанной поверхностью имеют более высокое сопротивление деформированию, чем металл с исходным состоянием поверхности.  [c.194]

Поэтому для реальных условий эксплуатации, практически всегда связанных с воздействием коррозионно-активных сред, расчет циклического ресурса по уравнениям типа Мэнсона не следует ограничивать лишь определением константы С по результатам статических испытаний. Нужно производить также определение показателя т для тех сред, в которых будет работать металл.  [c.234]

Исследования проводили в условиях постоянной растягивающей нагрузки и при циклическом нагружении образцов. Статические испытания при постоянном напряжении производили на специально сконструированной многопозиционной установке, позволяющей создавать в образцах различные по величине растягивающие напряжения. Испытания на циклическую выносливость проводили в условиях напряжения растяжения переменной величины на разрывной машине ГРМ-1 с гидропульсатором. Условия испытания нагрузка знакопостоянная, асимметричная (коэффициент асимметрии 0,5) при частоте нагружения 200 циклов в минуту на базе испытания ЫО циклов. Одновременно производили испытания натурных образцов сварных стыковых соединений и основного металла, вырезанных из труб действующего рассолонровода с размерами, аналогичными экспериментальным.  [c.236]

Типичное семейство кривых циклической ползучести, которые характеризуют процесс направленного пластического деформирования металла при различных уровнях максимальных напряжений цикла, представлено на рис. 1 для титанового сплава ВТ6С. Между процессами циклической ползучести и разрушения, как следует из анали.за экспериментальных данных, наблюдается четкая взаимосвязь. Если ползучесть характеризуется трехстадийностью, то макро-разрушеиие имеет квазистатический характер, т. е. происходит после реализации предельной пластичности, сопровождается образованием шейки в сечении разрыва, как и при статических испытаниях на кратковременную прочность.  [c.135]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Рис. 15. Начальные участки диаграмм статического (7) и циклического деформирования циклически разупроч-няющегося металла при испытании в воздухе (2) и активной жидкой среде (5) tg а = f tg о, = fи tg а, =Е Рис. 15. Начальные участки диаграмм статического (7) и <a href="/info/66036">циклического деформирования циклически</a> разупроч-няющегося металла при испытании в воздухе (2) и активной жидкой среде (5) tg а = f tg о, = fи tg а, =Е
Ударно-хрупкие металлы при статическом испытании дают вяпкий разрыв, сопровождаемый значительной работой пластической де-  [c.34]

Влияние скорости удара на ударную вязкость. Переход от статических испытаний к ударным для вязких металлов сопровождается повышением величин действующих напряжений почти при том же или даже более высоком удлинении. Возможное повышение величины работы пластической деформации сравнительно невелико увеличение скорости в 105 раз (переход от статического испытания к ударному) даёт увеличение работы пластической деформации в 1,6 раза. В случаях, когда увеличение скорости удара не вызывает хрупкого разрушения металла, величина практически не зависит от скорости при изменении последней в пределах, получающихся на обычных копрах. При переходе от обычных скоростей 3—7 м сек к скоростям 20—100 м1сек  [c.40]

Растяжение металла в спокойном состоянии, т. е. статическое испытание, ещ,е не показывает, как он воспринимает уда1рные нагрузки.  [c.14]

Твердость (см. п. 8.1.2) не является каким-то особым специфическим свойством металла, а испытания на твердость — одна из разновидностей механических испытаний [42]. В зависимости от характера приложения нагрузки и движения индентора (наконечника твердомера) различают методы измерения твердости путем вдавливания, царапания и отскока закаленного стального бойка от поверхности испытуемого материала. В зависимости от скорости приложения на1рузки на индентор различают статические и динамические методы измерения твердости. Наибольшее распространение в технике получили статические методы измерения твердости при вдавливании шара, конуса или пирамиды. По геометрическим размерам отпечатка, полученного при вдавливании индентора под определенной нагрузкой, подсчитывают значение твердости с помощью соответствующих формул и таблиц. В табл. 8.89 приведена краткая классификация основных методов измерения твердости путем вдавливания индентора различной формы.  [c.346]

Статические испытания на растяжение. Этими испытаниями определяют пределы пропорциональности, упругости, прочности и пластичность металлов. Для таких испытаний изготовляют плоские и круглые образцы (рис. 1.10, а,б), форма и размеры которых установлены ГОСТом. Цилиндрические образцы диаметром <1q= 10 мм, имеющие расчетную длину 1 =10dg, называют нормальными, а образцы, у которых длина I,, = 5dg — короткими. При испытании на растяжение образец растягивается под действием плавно возрастающей нагрузки и доводится до разрушения.  [c.34]

Результаты теоретических исследований, свидетельствующие о сложном характере реологического поведения материалов при высокоскоростном деформировании, полностью подтверждаются экспериментально. Особенности ударно-волнового нагружения металлов заключаются не только в высокой скорости деформирования и возможных структурных изменениях, но и в повышении температуры, которое особенно заметно при высоких напряжениях оь Оценки приращения температуры в ударных волнах по уравнениям состояния (см. гл. 2) дают следующие приращения температуры при 01 = 50 ГПа А7 = 400 С для Ее, 300 °С для Си и 170 °С для А1 при о, = 100 ГПа АГ = 1.5 10 °С для Ее, 1.3 103°С для Си и 3 10 °С для А1. Зависимость прочности металлов от скорости деформирования проявляется различным образом. Механические характеристики меди (отжиг) остаются неизменными при растяжении со скоростью е = 2 10 с (статические испытания) и высокоскоростной деформации со скоростью е =(5 10 —3 10 ) с [4]. Незначительное повышение условного предела текучести о. зарегистрировано в той же работе при таких же условиях испытаний для АМгб (отжиг) при растяжении и для АМгб в состоянии по ставки при сжатци. В то же время для твердой меди в пластической области отмечается повышение предела текучести примерно  [c.178]


Морэн в своем руководстве по сопротивлению материалов ) останавливается на чрезвычайно интересных отчетах двух инженеров, служивших в почтовом ведомстве на французских шоссейных дорогах. Эти инженеры рекомендовали проиэводить тщательный технический осмотр осей в почтовых каретах после эксплуатационного пробега ими 70 ООО км, мотивируя это тем, что, как показал опыт, в результате, по-видимому, такой работы в них появляются тонкие трещины в местах, где имеются резкие изменения профиля, в особенности в острых входящих углах. Они дают интересное описание картины постепенного образования этих трещин и отмечают хрупкий характер развития. При всем том, однако, они не разделяют (в то время принятой) теории, согласно которой повторные напряжения влекут за собой рекристаллизацию железа. Статические испытания осей, прошедших большую службу в эксплуатации, не обнаружили никаких изменений во внутренней структуре металла.  [c.197]

В. Вертгейм (W. Wertheim, 1815—1861) ), в частности, уделил такого рода определениям особенно большое внимание, и полученные им результаты еще и до сих пор весьма часто приводятся в учебниках физики. Сначала он принял гипотезу одной упругой постоянной, и в его первой статье приводятся значения модуля растяжения для различных материалов ). В основу им были положены не только статические испытания на растяжение, но также и опыты по продольным и поперечным колебаниям. Он нашел 1) что для одного и того же металла всякая обработка (ковка, прокатка), увеличивающая плотность, увеличивает вместе с том и модуль 2) что значение модуля, полученное из вибрационных  [c.265]

Установление предела выносливости в лабораториях с помощью испытательных машин малой скорости сопряжено с затратой времени и большими издержками, вследствие чего были предприняты многочисленные попытки выяснить, не существует ли каких-либо соотношений между пределом выносливости и другими меха-ническилш характеристиками материала, получаемыми из статических испытаний. Эти усилия увенчались небольшим успехом, хотя в результате их и было найдено, что предел выносливости для черных металлов, подвергаемых циклической нагрузке, составляет приблизительно 40—55% от предела прочности.  [c.451]

При экспериментировании с кристаллическими материалами, подобными, например, мягкой стали, предварительные статические испытания 1[оказали, что в цельных зернах, если напряжения в них не превышают предела упругости, никаких необратимых изменений не происходит. В интервале между пределом упругости и пределом текучести лишь немногие цельные зерна подвергаются дроблению, образуя незначительную часть более мелких зерен и кристаллитов (нижний предел размеров этих кристаллических осколков лежит в интервале 10" —10 см). По достижении предела текучести все цельные зерна подвергаются дроблению, образуя более мелкие зерна и большое количество кристаллитов. Под действием циклических напряжений, как было установлено, если амплитуда их превьппает безопасный предел, постепенное истирание и измельчени1е в кристаллитах завершаются разрушением точно так же, как и в статических испытаниях . Таким образом, опыты показали, что разрушение металлов под статической и под усгалост-ной нагрузкой сопровождается одинаковыми структурными изме-1гениями.  [c.453]

Обширная исследовательская работа была проведена по изучению режима металлов, подвергающихся действию повторной (усталостной) нагрузки и находящихся при этом в корродирующей среде. Хэйг ) заметил некоторое снижение предела выносливости в образпах латуни, испытанных под знакопеременной нагрузкой в условиях воздействия на них соленой воды, аммиака или соляной кислоты. Он указал при этом, что разрушительное действие аммиака на латунь проявляется лишь при условии одновременного воздействия обоих факторов корродирующего вещества и знакопеременной нагрузки. Дальнейшие успехи в изучении коррозионной усталости были достигнуты Мак-Адамом ), исследовавшим комбинированный эффект коррозии и усталости на различных металлах и их сплавах. Эти испытания обнаружили, что в большинстве случаев сильная коррозия металла до испытания его на усталость оказывает значительно менее вредное воздействие, чем легкая коррозия, происходящая одновременно с испытанием. При этом выяснилось также, что если средой для образца является воздух, то предел выносливости стали возрастает приблизительно пропорционально временному сопротивлению при статической нагрузке при проведении же этих испытаний в пресной воде результаты получаются совершенно иными. Было установлено, что предел коррозионной усталости стали с содержанием углерода свыше 0,25% не может быть повышен. Он может быть понижен термической обработкой. Опыты, проведенные в вакууме, показали ), что предел выносливости стали получается при этом таким же, как и при испытаниях на воздухе, между тем как в образцах из меди и латуни этот предел повышается соответственно не менее чем на 14 и 16%. Все эти результаты представляют большую практическую важность, поскольку многочисленные в эксплуатационных условиях аварии приходится часто относить на счет именно коррозионной усталости ).  [c.455]


Смотреть страницы где упоминается термин Металл статических испытаниях : [c.345]    [c.350]    [c.168]    [c.205]    [c.235]    [c.264]   
Основы металловедения (1988) -- [ c.45 , c.52 ]



ПОИСК



ИСПЫТАНИЯ МЕТАЛЛОВ Испытания статической нагрузкой

Испытание металла различных участков сварного соединения и наплавленного металла на статическое (кратковременное) растяжение

Испытание статическое

Испытания металлов при статическом однократном нагружении Дровдовский)

Металлы, вязкость статическая испытания

Статические испытания металлов Фридман)

Статическое и динамическое испытание металлов



© 2025 Mash-xxl.info Реклама на сайте