Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Камера сгорания сопло)

Для защиты от воздействия горячих газов стальные детали алитируют —насыщают алюминием. Такой обработке подвергают камеры сгорания, сопла и выхлопные патрубки поршневых двигателей.  [c.35]

Пневмогидравлическая схема этой двигательной установки с вытеснительной системой подачи представлена на рис. 165. И здесь надежность достигается резервированием, как видно по дублированию клапанов в магистралях наддува и подачи компонентов. Клапаны открываются пневматически, а закрываются под действием пружины. Сдвоенные соленоиды и электрические соединения обеспечивают надежность пневматического открытия клапанов. Двигательный блок включает камеру сгорания, сопло, клапаны и карданный подвес с рулевыми приводами. Камера сгорания охлаждается регенеративно горючим, которое протекает в одном направлении по 120 каналам, вы-фрезерованным в огневой стенке из нержавеющей стали с никелевым покрытием. У смесительной головки в камере предусмотрены 12 акустических полостей двух типов, которые обеспечивают устойчивую работу двигателя. Смесительная головка, приваренная к камере сгорания, имеет 1284 форсуночных отверстия для впрыска диаметром 0,76 мм со столкновением струй одного компонента.  [c.258]


Теперь рассмотрим построение полной эксергетической диаграммы для энергетического МГД-генератора вместе с его камерой сгорания, соплом и каналом . И в этом случае считаем, что течение газов происходит в прямой трубе переменной площади сечения Р с идеально изолированными стенками, через которые никакие потоки не проходят. В силу идеальной изоляции полный поток энергии через каждое сечение канала сохраняется одинаковым.  [c.77]

Для поддержания в рабочем состоянии камеры сгорания, сопла и баррели требуется применять водяное охлаждение, на котором теряется около 30 % энергии, выделяемой при сгорании топлива.  [c.30]

Трудности решения проблемы охлаждения оказывают заметное влияние на развитие ЖРД, во многом обусловливая выбор компонентов топлива, конструкций камер сгорания, сопла, форсуночных головок, систем подачи, определяя в значительной степени ряд важнейших характеристик двигателей, таких, например, как давление в камере сгорания, удельный импульс, удельная масса и пр.  [c.4]

I - компрессор низкого давления 2 - ИКП 3 - промежуточный корпус - компрессор высокого давления S - наружный контур 6 - основная камера сгорания 7 -воздушный теплообменник S - турбина высокого давления 9 - турбина низкого давления /О - смеситель JJ- коллектор форсажной камеры /2 - стабилизатор форсажной камеры JJ - форсажная камера /4 - реактивное сопло а - диск 6-й ступени КВД f 517°С б - диск 9-й ступени КВД, 592 С в - стенка жаровой турбины, 1150 С г - сопловая лопатка ТВД, 1030 С д - рабочая лопатка ТВД, 1035"С е - сопловая лопатка ТВД, 1035°С ж - рабочая лопатка ТНД, 888°С , з -форсажная камера 240 С  [c.447]

Наиболее совершенный цикл работы прямоточного воздушно-реактивного двигателя был бы получен в том случае, если бы сжатие воздуха на участке н — к (рис. 1.11) осуществлялось по идеальной адиабате и скорость потока была бы доведена до нуля, подвод тепла в камере сгорания k — w происходил бы при постоянном давлении, после чего выхлопная смесь расширялась бы в сопле ю — а до атмосферного давления также по идеальной адиабате. Прямоточный воздушно-реактивный двигатель, работающий по указанному совершенному циклу, называют идеальным.  [c.44]


Рис. 1.15. Схема турбореактивного двигателя D — диффузор, К — компрессор, Т — газовая турбина, А — камера сгорания, В — выходное сопло Рис. 1.15. Схема <a href="/info/19407">турбореактивного двигателя</a> D — диффузор, К — компрессор, Т — <a href="/info/884">газовая турбина</a>, А — <a href="/info/30631">камера сгорания</a>, В — выходное сопло
Скорость течения в каналах двигателя (в частности, перед компрессором и перед камерой сгорания) обычно должна быть значительно ниже скорости звука, вследствие чего внутренний канал сверхзвукового диффузора, куда воздух попадает из входного отверстия, делается расширяющимся. Но если во входном отверстии скорость равна критической, то такой канал может работать и как расширяющаяся часть сопла Лаваля с образованием сверхзвукового течения, завершаемого дополнительным скачком уплотнения.  [c.471]

На рис. 14.1 дана простейшая схема прямоточного ВРД для сверхзвуковых скоростей полета. На схеме показаны между сечениями /-/—//-// — входной диффузор, II-II—///-/// — камера сгорания, [11-1 I—IV-IV — сопло. В нижней части рис. 14.1 даны диаграммы изменения давления и скорости газа по тракту двигателя. Теоретический цикл прямоточного ВРД представлен на рис. 14.2, где линия а-с соответствует процессу адиабатного  [c.170]

II-И и II1-1II (рис. 14.1) поставить клапаны, которые при горении топлива разобщат камеру сгорания от входного диффузора и реактивного сопла. Впрыск топлива должен осуществляться периодически, когда эти клапаны будут закрыты.  [c.171]

Жидкостно-реактивный двигатель, схема которого приведена на рис. 14.6, состоит из камеры сгорания 1 с соплом 2, системы подачи топлива 3, в которую входят баки, насосы, агрегаты управления. Рабочие компоненты топлива — горючее и окислитель — подаются в камеру сгорания через форсунки 4, перемешиваются там и сгорают. Продукты сгорания расширяются в сопловом канале. При этом часть теплоты, которой они обладают, превращается в кинетическую энергию вытекающей среды. Скорость истечения га-  [c.173]

Равнодействующая от сил давления, приложенных к ст( нке камеры сгорания и сопла, создает силу, направленную в сторону, противоположную истечению, — силу тяги двигателя.  [c.173]

Закон действующих масс [уравнения (19.8), (19.9)1, полученный для смеси идеальных газов, применим и к процессам диссоциации и к рекомбинации молекул, которые имеют место в камерах сгорания и соплах ракетных двигателей.  [c.213]

Не менее острой является проблема охлаждения стенок камеры сгорания и сопла жидкостного ракетного двигателя. В камере сгорания таких двигателей температура газа превышает 3000° С, и поэтому даже при наружном охлаждении стенок топливом возможен прогар сопла. Проблема тепловой защиты стенок сопла и камеры ракетного двигателя твердого топлива усложняется тем, что топливо не может быть использовано для внешнего охлаждения.  [c.245]

В ракетных двигателях наибольшая величина теплового потока, передаваемого излучением, достигается в камере сгорания и уменьшается по тракту двигателя в соответствии с уменьшением термодинамической температуры газа. Для приближенной оценки распределения потоков теплоты, передаваемых излучением по длине сопла, можно считать, что до сечения сопла, в котором d = 2 d p.  [c.437]

Пленочное охлаждение используется как дополнительное средство защиты стенок камеры сгорания и сопла жидкостного ракетного двигателя, когда конвективное охлаждение не обеспечивает снижения температуры стенок до необходимой величины. В качестве охладителя обычно используется горючее.  [c.480]


Заградительное и комбинированное охлаждение широко используется для защиты стенок камер сгорания и реактивных сопл воздушно-реактивных двигателей. Эту систему охлаждения можно также использовать в газотурбинных двигателях для защиты лопаток и в ракетных двигателях твердого топлива для защиты внутренних поверхностей реактивного сопла. В последнем случае необходимый для защиты газ получается при горении специального топлива с низкой температурой сгорания, небольшое количество которого размещается перед входом в сопло.  [c.484]

Одновременно с воздухом в камеру сгорания топливным насосом 3 подается жидкое или газообразное топливо. В камере сгорания при закрытых клапанах 4,5 8 происходит (обычно от электрической свечи 6) воспламенение топлива, которое сгорает далее в условиях постоянного объема. После окончания сгорания открывается сопловой клапан 8 и продукты сгорания поступают в сопла, где адиабатически расширяются до атмосферного давления. Проходя через лопатки турбины, газ производит полезную работу, воспринимаемую потребителем 10 энергии, и затем выбрасывается через выпускной патрубок 9 в атмосферу.  [c.559]

Схема жидкостного реактивного двигателя показана на рис. 17.37. Жидкое топливо и жидкий окислитель подаются в камеру сгорания 2 при помощи питательных насосов 1. Топливо сгорает при постоянном давлении (что является наиболее простым) с постоянно открытым соплом 3. Газообразные продукты сгорания, расширяясь в сопле н вытекая из него с большой скоростью, создают необходимую для движения летательного аппарата силу тяги.  [c.567]

Топливо теоретически должно сгорать при постоянном давлении, однако из-за потерь давление вдоль камеры несколько падает. Горячие газы из камеры сгорания поступают в газовую турбину, где, расширяясь, производят полезную работу, затрачиваемую на,привод компрессора. По выходе из турбины газообразные продукты сгорания попадают в реактивное сопло 5, в котором происходит дальнейшее их расширение и преобразование потенциальной энергии давления в кинетическую давление газа при этом уменьшается до атмосферного, а скорость газа значительно возрастает, в результате чего и создается реактивная тяга.  [c.571]

I — компрессор 2 —подогреватель сжатого воздуха 3 —топливный насос — камера сгорания 5—сопло и рабочий ка-мал МГД-генератора 6 —парогенератор 7—паровая турбина 8 конденсатор 9 питательный насос  [c.612]

При идеальном обратимом процессе в ПВРД имеем, что в диффузоре, камере сгорания, сопле и внешнем потоке давление торможения сохраняется. Отсюда вытекает, что р = р -Поэтому из (10.19) получим, что но Гг  [c.140]

Приведенный на рис. 5.4 алгоритм реализован в виде программ для ЭЦВМ БЭСМ-4 на машинном языке и для БЭСМ-6 на языке АЛГОЛ. При расчете технологической схемы комбинированной установки применяются в качестве вспомогательных программы расчета физических параметров рабочих тел (низкотемпературной плазмы, кислород о-воз-душного окислителя, воды и водяного пара) и отдельных элементов схемы (МГД-генератора, камеры сгорания, сопла, компрессора и системы его охлаждения, регенеративной системы паровой турбины и т. д.). С учетом вспомогательных программ используется (например для БЭСМ-4) 3270 (8) ячеек оперативной памяти. Время счета составляет 15—40 мин в зависимости от исходных данных.  [c.126]

Весьма важны исследования влияния принятых ограничений на зоны допустимых значений для некоторых зависимых параметров. Так, представляют интерес для конструкторских разработок данные о взаимном влиянии между величиной конечной проводимости 0 2 и характеристиками МГД-генератора при наличии ограничений на ряд параметров. Для соответствующих исследований была использована часть модели, описывающая камеру сгорания, сопло, МГД-генератор и диффузор. В качестве исходных данных были приняты следующие мощность МГД-генератора Л мгд-г = 500 Мет, скорость плазмы в МГД-канале U = S50 м/сек, индукция магнитного поля В = 5 тл, коэффициент электрической нагрузки = 0,8, приалектродное падение потенциалов Удр = 60 в, сечение канала МГД-генератора — квадратное, ширина электродной секции в = = 6 см, температура стенки канала МГД-генератора Т% = 1200° К, давление за диффузором рзд = 1,05 ата, к.п.д. диффузора (по давлению) -цд = 0,8, горючее — метан, окислитель — воздух, обогащенный кислородом.  [c.129]

Х23Н18 <0,20 22-25 17-20 Детали паровых турбин, камеры сгорания, сопло-  [c.332]

Основными недостатками поршневых двигателей внутреннего сгорания ЯВЛЯЮТСЯ ограниченность их мощности и невозможность адиабатного расширения рабочего тела до атмосферного даЕления. Эти недостатки отсутствуют в газотурбинных установках, где рабочим телом являются продукты сгорания жидкого или газооб )азного топлива. Рабочее тело, имеющее высокие температуру и данлеиие, из камеры сгорания направляется в комбинированное сопло, в котором оно расширяется и с большой скоростью поступает на лопатки газовой турбины, где используется его кинетическая энергия для получения механической работы.  [c.278]

На рис. 18-5 дана схема газотурбинной установки со сгоранием топлива при постоянном объеме. В этой установке сжатый в турбокомпрессоре 6 воздух поступает из ресивера (сосуда большой емкости для выравнивания давления) 7 через воздушный клапан 8 в камеру сгорания 1. Сюда же топливным насосом 5 через топливный клапан 9 подается жидкое топливо. Продукты сгорании, пройдя через сопловой клапан 2, расширяются в комбинированком сопле. и приводят во вращение ротор газовой турбины 4.  [c.282]


На рис. 18-16 изображена схема пульсирующего ВРД со сгоранием топлива при V onst. Сжатый воздух в диффузо[)е / направляется в камеру сгорания одновременно с ним в камеру подается и топливо. После ее заполнения клапаны 2, отделяющие диффузор от камеры, закрываются и производится воспламенение горючей смеси при помощи электрической искры. Процесс горения протекает быстро и в цикле изображается изохорой. По окоичапии сгорания смеси открывается сопловой клапан (на рис. не показал), происходит процесс pa uHipennn продуктов горения в сопле 4, из которого газы выбрасываются в атмосфе[)у. Затем рабочий процесс повторяется.  [c.290]

Характерным в работе такого двигателя является то, что вследствие периодического отключения камеры сгорания от сопла наблюдаются хлопки или пульсации, поэтому часто реактивный двигатель этого типа называют пульсируюигим.  [c.290]

Поперечный вдув струй в сносящий поток представляет практический интерес в связи с разнообразными приложениями, начиная от разбавления продуктов сгорания воздухом в камерах сгорания (КС) газовых турбин и заканчивая аэродинамикой реактивной струи при переходе самолета вертикального или укороченного взлета и посадки с режима подъема на крейсерский режим. При вдуве струи в сносящий поток наблюдается сложная картина течения [1, 87]. Поперечное сечение струи принимает почкообразную форму и состоит из двух вихрей, закрученных в противоположные стороны. Основной поток, обтекая струю, формирует зону обратных токов. Возникающие зоны возвратных течений могут быть использованы для стабилизации фронта пламени в прямоточных КС авиационных двигателей. Генератором стабилизирующей струи служит вихревой воспламенитель [141] (см. п.7.1). Преимущества этих систем — высокая надежность запуска и устойчивая работа в щироком диапазоне изменения физических и климатических условий. В этом случае стабилизация осуществляется на высокотемпературном факеле — закрученном потоке продуктов сгорания, истекающих из сопла-диафрагмы с трансзвуковой скоростью, что может быть использовано для воспламенения сносящего потока топливо-воздушной смеси. При  [c.359]

В части 1 рассмотрена теория одномерных газовых течений, на которой б зируются методы расчета реактивных двигателей, лопаточных машин, эжекторов, аэродинамических труб и испытательных стендов. Изложены теория пограничного слоя и теория струй, лежащие в основе определения сопротивления трения, полей скорости и температуры в соплах, диффузорах, камерах сгорания, эжекторах и т. п.  [c.2]

Рис. 1.11. Схема прямоточного воздушно-реактивного двигателя е — входное сечение, к — начальное сечение камеры сгорания, w — конечное сечение калгеры сгорания, а — выходное сечение сопла Рис. 1.11. <a href="/info/290092">Схема прямоточного воздушно-реактивного двигателя</a> е — входное сечение, к — начальное сечение <a href="/info/30631">камеры сгорания</a>, w — конечное сечение калгеры сгорания, а — выходное сечение сопла
Исли дав.чение за турбиной выше, чем перед компрессором, то приведенная скорость истечения при одинаковых условиях полета у турбореактивного двигателя выше, чем у прямоточного воздушно-реактивного двигателя. Но в последнем возможны более высокие температуры. Поэтому прямоточный воздушно-реактивный двигатель может развивать большие удельные тяги даже при меньших давлениях в реактивном сопле. Однако для увеличения тяги в турбореактивном двигателе можно поместить за турбиной вторую камеру сгорания (так называемую форсажную камеру), в которой газ может дополнительно нагреваться до такой же температуры, как и в прямоточном воздушно-реактивном двигателе. В этом случае тяга турбореактивного двигателя существенно возрастает.  [c.57]

Вычисления показывают, что некоторый отход от расчетных условий не влечет за собой значительного уменьшения реактивной тяги. Получается это потому, что изменение третьего члена в формуле тяги компенсируется в значительной мере изменением первых двух членов. По этой причине в тех случаях, когда выходное сечение соила больше, чем сечение камеры сгорания, в целях снижения лобового сопротивления можно без особого ущерба для тягп укоротить сопло, приняв т. е. работая  [c.155]

На рис. 17.42 в р — о-диаграмме изображен цикл воздушно-реактивного двигателя с подводом теплоты при V = onst. Процесс 12 соответствуе- сжатию воздуха в диффузоре при движении самолета. В состоянии, изображаемом точкой 2, камера сгорания разобщается клапаном с диффузором и происходит воспламенение топлива (при помощи электросвечи). Процесс 23 соответствует изохорическому подводу теплоты к рабочему телу при сгорании топлива. По окончании сгорания топлива открывается клапан, отделяющий камеру сгорания от выпускного сопла, и в процессе 34 продукты сгорания адиабатично расширяются в сопле. Процесс 41 условно соответствует выбросу в атмосферу и охлаждению в ней продуктов сгорания, происходящему при постоянном давлении, равном атмосферному.  [c.570]

Газ из камеры сгорания истекает в атмосферу (высота Н = 5 км) через сопло Лаваля. Определите давление в камере сгорания, при котором сверхзвуковое сопло работает в расчетном режиме, если известны отношение площади выходного сечения сопла к площади критического сечения Sa/S = 3 и показатель адиабаты газа k = pJ v = 1,33.  [c.79]


Смотреть страницы где упоминается термин Камера сгорания сопло) : [c.75]    [c.194]    [c.128]    [c.213]    [c.152]    [c.372]    [c.62]    [c.286]    [c.130]    [c.15]    [c.113]    [c.43]    [c.570]    [c.96]   
Ракетные двигатели (1962) -- [ c.411 ]



ПОИСК



Камера сгорания ВРД

Конструктивные особенности камеры сгорания и сопла

Профилирование сверхзвуковой камеры сгорания и сопла. Крайко А. Н., Макаров В. Е., Тилляева

Расчет газодинамических характеристик камеры сгорания и сопла

Расчет геометрических характеристик камеры сгорания и сопла

Расчет температуры жидкостной стенки и температуры газовой стенки камеры сгорания и сопла

Сопло



© 2025 Mash-xxl.info Реклама на сайте