Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление кинетическое

Следовательно, энергетический смысл уравнения Бернулли можно выразить так при установившемся движении потока жидкости сумма четырех удельных энергий (энергии положения, давления, кинетической и потерь) остается неизменной вдоль потока.  [c.36]

Понижение или повыщение давления в трубопроводе в результате гидравлического удара объясняется инерцией массы жидкости, перемещающейся в нем. Резкое изменение скорости потока в трубопроводе приводит к возникновению ускоренного или замедленного движения, в результате в движущейся жидкости появляются силы инерции, которые и вызывают соответствующее понижение или повыщение давления (кинетическая энергия потока переходит в работу сил давления). Изменение давления при этом тесно связано с упругими деформациями жидкости и стенок трубопровода. Подобное неустановившееся движение жидкости в трубопроводах часто встречается в практике их эксплуатации.  [c.66]


Принцип действия напорных трубок основан на равенстве разности полного и статического давлений кинетической энергии потока, которое следует из уравнения Бернулли  [c.40]

Для того чтобы определить падение давлепия в разгонном участке, заметим, что изменение профиля скоростей влечет за собой изменение кинетической энергии жидкости, а следовательно, и изменение потенциальной, т. е. давления. Кинетическая энергия, которую переносит жидкость за единицу времени сквозь  [c.472]

Отрыв потока сопровождается большими потерями полного давления кинетическая энергия образовавшихся вихрей не преобразуется в давление вниз по течению, а необратимо переходит в тепло. За точкой отрыва давление ниже, чем в тех же местах нри безотрывном обтекании. Поэтому прн обтекании с отрывом равнодействующая сил давления всегда имеет составляющую, направленную по направлению потока. Эта составляющая называется сопротивлением давления.  [c.39]

Сравнивая уравнения (9.8) и (9.11), можно увидеть, что в случае сжимаемого потока полное давление торможения уже не является простой суммой статического давления р и динамического давления (кинетической энергии)  [c.162]

Представляют интерес схемы обработки металлов давлением со всесторонним сжатием и интенсивным направленным течением металла (например, объемная штамповка деталей с ребрами, шлицами, обратное выдавливание и т. п.). В этих случаях перенос объемов сопровождается контактным скольжением металла относительно поверхности инструмента при высоких нормальных давлениях. Кинетическая энергия переноса преобразуется в энергию граничного трения. Процесс сдвигового перемещения в толще деформируемого металла может быть представлен как движение с внутренним трением  [c.423]

Здесь / -давление, кинетическая энергия турбулентности, ц и 1,-коэффициенты молекулярной и турбулентной вязкостей, Рг и Рг, - ламинарное и турбулентное числа Прандтля, Ке - число Рейнольдса. По повторяющимся индексам /, у, к везде предполагается суммирование. Система уравнений дополняется уравнением состояния  [c.81]

Давление обусловлено взаимодействием молекул рабочего тела с поверхностью и численно равно силе, действующей на единицу площади поверхности тела по нормали к последней. В соответствии с молекулярно-кинетической теорией давление газа определяется соотношением  [c.7]


С позиций кинетической теории газов энтропию можно определить как м< ру неупорядоченности системы. Когда от системы при постоянном давлении отводится теплота, энтропия уменьшается, а упорядоченность в системе повышается. Это можно наглядно  [c.27]

Из опыта известно, что если на пути движения газа или пара в канале встречается препятствие (местное сопротивление), частично загромождающее поперечное сечение потока, то давление за препятствием всегда оказывается меньше, чем перед ним. Этот процесс уменьшения давления, в итоге которого нет ни увеличения кинетической энергии, ни совершения технической работы, называется дросселированием.  [c.50]

В этом случае адиабатный стационарный процесс с идеальным газом, в котором изменения кинетической и потенциальной энергии ничтожны, является также изотермическим. Для реальной жидкости возможны изменения температуры, так как энтальпия — функция и температуры и давления.  [c.55]

Углекислый газ подается со скоростью 1 моль мин через редуктор в изолированный трубопровод, и давление понижается с 10 атм до 1 атм. Температура газа при входе в редуктор 100 °С. Определить температуру после понижения давления. Изменениями кинетической и потенциальной энергии пренебречь.  [c.188]

Работы Максвелла и Больцмана составили один из наиболее важных этапов в понимании тепловых величин. С тех пор стало возможным определять температуру либо через макроскопические термодинамические величины, такие, как теплота и работа, либо (с равным основанием и тождественными результатами) как величину, которая характеризует распределение энергии между частицами системы. Однако ограничение кинетической теории Максвелла и Больцмана заключалось в том, что она применима только к системам невзаимодействующих частиц, т. е. исключительно к идеальным газам, а на практике — к реальным газам в пределе низких давлений или высоких температур.  [c.20]

Давление. Давление с точки зрения молекулярно-кинетической теории есть средний результат ударов молекул газа, находящихся в непрерывном хаотическом движении, о стенки сосуда, в котором заключен газ, и представляет собой нормальную составляющую силы, действующей на единицу поверхности.  [c.13]

Из молекулярно-кинетической теории следует, что удельное давление газа численно равно 2/3 средней кинетической энергии поступательного движения молекул, заключенных в единице объема,  [c.23]

Из кинетической теории известно, что давление, оказываемое идеальным газом на стенки, равно 2/3 средней кинетической энергии поступательного движения атомов, т. е.  [c.74]

При прохождении газа через отверстие, представляющее известное сопротивление, кинетическая энергия газа и его скорость в узком сечении возрастают, что сопровождается падением температуры и давления (рис. 14-1).  [c.218]

Пример 14-1. Имеем 1 кг перегретого водяного пара с давлением Pi = 100 бар и /j = 530° С в первом случае при этих параметрах пар поступает в паровую турбину, где адиабатно расширяется до конечного давления рг = 0,05 бар. При этом за счет изменения внешней кинетической энергии пар совершает работу, численно равную изменению энтальпии.  [c.232]

Давление р нельзя определить произвольно, так как оно должно соответствовать определению давления в термодинамике через кинетическую энергию движения молекул.  [c.572]

Г идравлический двигател ь—машина, преобразующая энергию капельной жидкости (энергию положения, давления, кинетическую) в механическую работу на валу или штоке двигателя. Двигатели, использующие только энергию давления (водостолбовые машины, гидравлические цилиндры) или главным образом энергию положения (виды водяных колёс), имеют несравненно меньшее значение, нежели водяные турбины (гидравлические турбины, гидротурбины), использующие энергию давления и кинетическую. Водяная турбина развивает на своём валу крутящий момент за счёт изменения момента количества движения или, иначе, циркуляции протекающего через её рабочее колесо потока жидкости (почти всегда воды).  [c.253]


Тогда энергетический смысл уравнения Бернулли можно сформулировать следующим образом при установивилемся движении жидкости сумма четырех удельных энергий (энергии положения, энергии гидродинамического давления, кинетической энергии и потерь энергии) остается неизменной вдоль потока.  [c.33]

Осуш,ествить непрерывное расширение рабочего тела по адиабате гЬ " сначала в цилиндре поршневого двигателя (от г до Ь"), а затем в газовой турбине практически невозможно, так как процессы выпуска рабочего тела из цилиндра производятся периодически, в виде отдельных импульсов, а процессы течения газа в турбине — непрерывно. При периодическом истечении газов из цилиндра в турбину через выпускной трубопровод происходит расширение и торможение газового потока с переходом его кинетической энергии в тепловую. В результате этого давление в трубопроводе перед турбиной в значительной степени выравнивается, в особенности при выпуске газов из цилиндров многоцилиндрового двигателя в один обш,ий трубопровод, причем потеря располагаемой работы газов растет с увеличением объема между цилиндром и турбиной. Поэтому для осуществления цикла с продолженным расширением с использованием импульса давления (кинетической энергии газов, вытекающих из цилиндра) необходимы усложненные выпускные системы и газовые турбины, рассчитанные для работы при пульсирующей скорости потока газов.  [c.12]

Повышение температуры тела свидетельствует об увеличении кинетической энергии его частиц. Увеличение объема тела приводит к изменению попенциаль-ной энергии частиц. В результате внутренняя энергия тела увеличивается на dU. Поскольку рабочее тело окружено средой, которая оказывает на него давление, то при расширении оно производит механическую работу 6L против сил внешнего давления. Так как никаких других изменений в системе не происходит, то по закону сохранения энергии  [c.14]

Турбины, в которых весь расп слагаемый теплоперепад преобразуется в кинетическую энергию потока в оплах, а в каналах между рабочими лопатками расширения не происходит (давление рабочего тела не меняется), называются активными или турбинами равного давления.  [c.167]

Нгидкость и стенкн трубы предполагаются упругими, по )гому они возвращаются к прежнему состоянию, соответствующему давлению рд. Работа деформации полностью переходит в кинетическую энергию, II жидкость в трубе приобретает первоначальную скорость Уд, но направленную теперь в противопо./гожную сторону.  [c.141]

С этой скоростью 5кндкая колонна (рис. 1.106, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна под данлением — Руп> которая направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки 1рубы и расширившуюся жидкость, что обусловлено сни кением давления (рис. 1.106, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.  [c.141]

Определить скорость переноса теплоты и минимальную мощность (л. с.), необходимые для сжатия 1 моль1мин идеального газа при первоначальных температуре 500 °R (4,5 С) и давлении 1—10 атм при следующих условиях, пренебрегая изменением кинетической и потенциальной энергии (стационарный процесс)  [c.67]

Идеальный газ проходит со скоростью 1 моль мин через вентиль, понижающий давление, в изолированный трубопровод, причем давление в этом трубопроводе снижается от 100 до 15 фунт/дюйм (от 7,03 до 1,05 кГ1см ). Если температура в начале потока 30 °С, определить температуру в конце потока по понижению давления. Считать, что изменения кинетической и потенциальной энергии незначительны, а теплоемкость 7 брит. тепл. ед. (7 кал) не зависит от температуры.  [c.67]

Проблема адсорбции пара на твердых поверхностях играет важную роль в процессах хроматографического разделения, ионного обмена и химического катализа. В этой системе представляет интерес соотношение между количеством адсорбированного вещества и давлением в системе при данной температуре в условиях равновесия. Такое соотношение впервые вывел Лангмюр на основании кинетического анализа скоростей адсорбции и десорбции. Условия равновесия были установлены путем приравнивания скоростей двух противоположных процессов. Однако полученные Лангмюром изотермы адсорбции не зависят от скоростей и механизма процесса и могут быть целиком получены на основе критерия равновесия, выраженного уравнением (8-17), или с помощью положения, что химический потенциал компонента должен быть один и тот же в обеих фазах.  [c.269]

Изменение энергии выделенного элементарного объема ЛУп возникает ib связи с притоком тепла и работой внешних сил (массовых и поверхностных). Причем это изменение проявится в увеличении кинетической энергии среднего и пульсационного движения и в изменении внутренней энергии элемента. Учитывая, что для дисперсных потоков теплоносителей характерны в основном умеренные скорости течения, пренебрегаем изменением давления и кинетической энергии компонетов. Полагая также, что внутренние источники или стоки энергий отсутствуют, в соответствии с первым законом термодинамики для изобарных процессов получим, что количество переданного элементу ДУц за время Лт тепла AQa равно изменению энтальпии его компонентов  [c.40]

Увеличение поперечного сечения по длине диффузора обусловливает уменьшение средней скорости течения и, согласно уравнению Бернулли, повышение статического давления. Таким образом, вдоль диффузора устанавливается положительный градиент давления, вызываюгций силу, которая направлена против основного течения. Статическое давление, повышающееся вдоль диффузора, одинаково по всему поперечному сечению, включая область, непосредственно прилегающую к стенке, тогда как скорости распределены по сечению неравномерно и снижаются до нуля у стенки. Вследствие того, что по длине диффузора скорость течения продолжает уменьшаться, при определенных значениях и возникает состояние, при котором запас кинетической энергии потока в пограничном слое становится недостаточным для преодоления давления, характеризующегося положительным градиентом, и поток отрывается от стенок (рис. 1.21, а).  [c.27]


Процесс дросселирования тела всегда связан с потерей располагаемой работы. Действительно, при дросселировании газ не производит полезной работы над внешним объектом работы, а кинетическая энергия газа не меняется, поэтому вся работа расширения газа от давления до давления Рг и работа piVi — P2V2, которую производит окружающая среда при проталкивании газа через дроссель, затрачивается на преодоление сил трения и переходит в теплоту трения  [c.224]


Смотреть страницы где упоминается термин Давление кинетическое : [c.280]    [c.147]    [c.173]    [c.41]    [c.97]    [c.130]    [c.146]    [c.167]    [c.274]    [c.156]    [c.252]    [c.94]    [c.191]    [c.68]    [c.68]    [c.34]    [c.85]   
Гидроаэромеханика (2000) -- [ c.68 ]

Гидро- и аэромеханика Том 1 Равновесие движение жидкостей без трения (1933) -- [ c.109 ]



ПОИСК



Давление газа, кинетическое объяснение

Уравнение неразрывности. Превращение энергии давления в кинетическую энерПриложения к измерительной технике Трубка Вентури, сопло, диафрагма



© 2025 Mash-xxl.info Реклама на сайте