Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цепочка уравнений для кинетических функций распределения

Центральная предельная теорема 146 Цепочка уравнений для кинетических функций распределения 2 9, 400 ---равновесных функций распределения 405  [c.447]

Прежде чем приступить к основной теме, остановимся кратко на обозначениях. Ранее одночастичная функция распределения Д(г,р, ) вводилась как функция радиуса-вектора г и импульса р частицы. Такое удобно при выводе цепочки уравнений для приведенных функций распределения из уравнения Лиувилля. Однако в кинетической теории чаще пользуются одночастичной функцией распределения / (г, v, ), которая зависит от скорости частицы. Для более наглядного сравнения излагаемого здесь подхода с традиционными методами построения нормальных решений кинетических уравнений мы будем исходить из уравнения Больцмана, записанного для функции /(r,v, ). Нетрудно установить связь между этой функцией и Д(г,р, ). Вводя условие нормировки  [c.234]


Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]

ДЛЯ всевозможных моментов дает аналитическую формулировку проблемы турбулентности. Но эта система уравнений оказывается весьма сложной любая конечная подсистема этой системы уравнений всегда незамкнута, т. е. содержит больше неизвестных, чем имеется уравнений в данной подсистеме (невозможность получить замкнутую систему уравнений для конечного числа моментов является прямым следствием н е л и-ней ности уравнений гидродинамики). Таким образом, при использовании метода Фридмана — Келлера в применении к конечному числу моментов возникает проблема замыкания уравнений для моментов, во многом аналогичная проблеме замыкания цепочки уравнений для многочастичных функций распределения в кинетической теории газов.  [c.18]


Цепочка уравнений Боголюбова (6.10) для неравновесных функций распределения лежит в основе статистической теории неравновесных процессов. Найдем частное решение этой цепочки уравнений для кинетической стадии эволюции неравновесной системы, определяемой кинетическим уравнением вида (6.12)  [c.108]

Заканчивая обсуждение модифицированного уравнения Энскога, нам хотелось бы отметить два важных момента. Во-первых, это уравнение соответствует очень грубому приближению в цепочке (3.3.58), поскольку трехчастичная функция распределения никак не учитывалась в уравнении для Д. Это обстоятельство подсказывает возможность улучшения теории Энскога с помощью той или иной аппроксимации трехчастичной функции распределения. Во-вторых, кинетическое уравнение (3.3.66) применимо к системам с непрерывным потенциалом взаимодействия. Это позволяет обобщить теорию Энскога на подобные системы ). Правда, для систем с непрерывным потенциалом взаимодействия G2(ri,T2, ) зависит от параметра /5(г, ) и, следовательно, одновременно с кинетическим уравнением для одночастичной функции распределения необходимо рассматривать уравнение баланса энергии.  [c.215]

Цепочка уравнений Боголюбова для кинетических функций распределения  [c.298]

Как уже отмечалось, квантовые кинетические уравнения можно вывести из цепочки уравнений для 5-частичных матриц плотности, которые аналогичны 5-частичным функциям распределения в классических системах. Здесь мы займемся построением этой цепочки уравнений, исходя из квантового уравнения Лиувилля для неравновесного статистического оператора. Мы также приведем примеры, иллюстрирующие возможности метода группового разложения в квантовой кинетической теории.  [c.266]

Мы уже знаем, что уравнение Лиувилля, а следовательно, и уравнение цепочки Боголюбова удовлетворяются функциями распределения, постоянными вдоль траекторий механического движения частиц системы. Но мы желаем построить кинетическое уравнение не для функций, описывающих такое движение (они строятся на основе решения задачи механики и описывают чистое механическое состояние системы, см. задачи 1 и 31), а для статистических функций распределения (т.е. функций, характеризующих смешанное состояние всей системы), в частности, для такой функции J l, которая в комбинации п 1(<, г, р) йт ф определяет статистическое число частиц в объеме йг йр в момент < и которая является характеристикой не отдельной частицы, а всей статистической системы в целом.  [c.313]

Конечно, мы чисто интуитивно полагаем, что предельное при t +оо решение, следующее из уравнения Больцмана, соответствует описанию термодинамически равновесного состояния системы. В задаче 32 показано, что цепочка уравнений для кинетических функций распределения в стационарном случае dFJdt = О содержит в себе цепочку уравнений для равновесных функций F,, О построенных на основе распределения Гиббса, т. е. Рис. 200. Характер эволюции равновесные функции F, удовлетворяют цепочке Pf-функции Больцмана  [c.323]

Итак, мы видели, что для учета эффектов обрезания траекторий частиц на длине свободного пробега необходимо просуммировать бесконечную последовательность членов в цепочке уравнений для приведенных функций распределения. Типичный подход к решению подобных проблем состоит в применении диаграммной техники , дающей графическое представление рассматриваемых величин и позволяющей сформулировать простые правила, с помощью которых может быть выписан любой член теории возмущений. В классической кинетической теории диаграммная техника такого рода была впервые разработана Балеску [56, 57]. В настоящем разделе будет рассмотрен ее вариант [26], который позволяет в удобной форме учесть граничные условия для приведенных функций распределения. Будут сформулированы правила построения диаграмм для приведенных функций распределения и интеграла столкновений в любом порядке теории возмущений по плотности. Кроме того, мы рассмотрим несколько простых примеров вывода кинетических уравнений с помощью диаграммного метода.  [c.181]


С пол ощью уравнения Лиувилля мояшо понять, что необходимо знать для получения ураппения, которому подчиняется одночастичная функция распределения. Болес того, изучая следствия, вытекающие из уравнения Лиувилля, можно найти путь для построения его приближенных решений, дающих, в частности, кинетические уравнения. Такой путь открывается при рассмотрении цепочки уравнений для многочастичпых функций распределения, получаемой с помощью уравнения Лиувилля.  [c.186]

При изучении динамики больших систем естественно исходить из полученного в разд. 3.4 уравнения Лиувилля для частичных функций распределения. Однако эта форма уравнения Лиувилля пока еще не была достаточно подробно рассмотрена. Из качественного анализа, проведенного в разд. 11.5, ясно, что центральное место в теории должно занимать понятие корреляций, а не функций распределения. Мы видели, например, что двухчастичная корреляционная функция не входит явно в уравнение Больцмана, несмотря на то, что она играет существенную роль в точной цепочке уравнений ББГКИ. Следовательно, для последовательного вывода уравнения Больцмана (и других кинетических уравнений) из точных уравнений движения необходимо разработать формализм, в котором быля бы явно представлены различные корреляционные формы.  [c.123]

Кинетическое уравнение для одночастичной матрицы плотности можно вывести из квантового уравнения Лиувилля различными способами. В частности, для этого достаточно построить статистический оператор g t), удовлетворяющий граничному условию ослабления корреляций в отдаленном прошлом, и выразить его через ква-зиравновесный статистический оператор Qq t) который, в свою очередь, зависит от одночастичной матрицы плотности. Такой метод оказывается особенно удобным для систем со слабым взаимодействием частиц, так как он позволяет построить интеграл столкновений, исходя только из общих свойств системы. Вывод квантовых кинетических уравнений с помощью этого метода дается в параграфе 4.1. Другой подход к квантовой кинетической теории основан на цепочке уравнений для 5-частичных матриц плотности которые аналогичны классическим 5-частичным функциям распределения. В случаях слабого взаимодействия между частицами или малой концентрации частиц, квантовую цепочку уравнений можно решить с помощью теории возмущений. Некоторые разновидности этого подхода изложены в книгах [35, 57]. В параграфах 4.2 и 4.3 мы рассмотрим квантовую цепочку уравнений с точки зрения метода неравновесного статистического оператора. Вначале мы построим групповое разложение интеграла столкновений для систем с малой плотностью, а затем обобщим метод на плотные квантовые системы.  [c.248]

Р( (о) или Р1 с1(х)) на фазовом пространстве турбулентного течения, и потому их нахождение явилось бы полным решением проблемы турбулентности. В работе Эбергарда Хопфа (1952) для характеристического функционала турбулентного поля скорости в несжимаемой жидкости было выведено уравнение в вариационных производных, замечательной особенностью которого является его линейность. В работе А. С. Монина (19676) и некоторых работах других авторов были выведены уравнения для конечномерных плотностей распределений вероятности значений гидродинамических полей на конечных наборах точек пространства-времени (образующие бесконечную зацепляющуюся цепочку и также оказавшиеся линейными). Таким образом, хотя динамика жидкости нелинейна, основная проблема статистической гидромеханики, сформулированная в терминах характеристических функционалов или набора конечномерных плотностей вероятности, оказывается линейной задачей. Отметим, что уравнение Хопфа оказалось формально близким к так называемому уравнению Швинтера квантовой теории поля (на имеющуюся аналогию между теорией турбулентности и квантовой теорией поля мы уже указывали выше). Уравнения для конечномерных распределений вероятности оказались аналогичными цепочке уравнений Н. Н. Боголюбова для п-частичных функций распределения скоростей молекул в кинетической теории газов.  [c.20]

Наиболее полное развитие получил метод Боголюбова, основанный на построении иерархической цепочки зацепляющихся уравнений для функции распределения, следующий из уравнения Лиувилля [101, 102, 2, 3, 6, Ц]. Этот метод, известный под названием метода Боголюбова — Борна — Грина — Кирквуда — Ивона (ББГКИ), заканчивается выводом кинетического уравнения больцмановского тина. Используемый в нем принцип ослабления корреляций заключается, грубо говоря, в том, что частицы, находящиеся достаточно далеко друг от друга, должны совершать нескоррелированные движения. Этот метод не будет рассматриваться далее, однако на одном из вопросов полезно остановиться.  [c.105]

Результаты, полученные в задачах 31, 32, можно подытожить с несколько иной точки зрения мы показали, что уравнения цепочки Боголюбова для функций Р, (как и вытекающие из них кинетические уравнения) содержат решения, которые в каждый момент времени соответствуют чисто механическому состоянию всех частиц системы, и в то же время их решениями являются функции распределения Р,, соответствующие равновесной статистической механике Шббса, описывающей предельное смешанное состояние равновесной статистической системы. >  [c.405]


Смотреть страницы где упоминается термин Цепочка уравнений для кинетических функций распределения : [c.13]    [c.282]    [c.299]    [c.468]    [c.300]   
Термодинамика и статистическая физика Т.3 Изд.2 (2003) -- [ c.299 , c.400 ]



ПОИСК



Кинетические уравнения

Р-распределение из Q-функци

Уравнения для функции

Функция распределения

Функция распределения кинетической

Цепочка сил

Цепочка уравнений Боголюбова для кинетических функций распределения

Цепочка уравнений для кинетических

Цепочка уравнений для кинетических равновесных функций распределения



© 2025 Mash-xxl.info Реклама на сайте