Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точечные дефекты II 234. См. также Дефекты в кристаллах

Точечные дефекты, мигрируя в кристалле, могут взаимодействовать как друг с другом, так и с другими дефектами. Так, например, встречаясь при своем движении, вакансия и межузельный атом могут аннигилировать. Атомы примесей также могут взаимодействовать с вакансиями, при этом образуются комплексы вакансия— примесь. Имеет место взаимодействие точечных дефектов и с дефектами линейными— дислокациями.  [c.123]


Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

Точечные дефекты, возникающие при облучении кристаллов быстрыми частицами (нейтронами, протонами, электронами), а также осколками деления ядер и ускоренными ионами, получили название радиационных дефектов. В отличие от тепловых радиационные точечные дефекты термодинамически неравновесны, так что после прекращения облучения состояние кристалла не является стационарным.  [c.94]

Точечные дефекты и примесные атомы взаимодействуют также и с винтовыми дислокациями. В большинстве реальных кристаллов в силу анизотропии искажения, создаваемые дефектами, являются несимметричными. Это и приводит к взаимодействию их со скалывающими напрял ениями вокруг винтовой дислокации. Таким образом, разница между винтовой и краевой дислокациями в этом от-нощении не так велика, как может показаться сначала.  [c.109]

Исходным лазерным материалом являются кристаллы фторидов и хлоридов щелочных металлов, а также фториды кальция и стронция. Используются также кристаллы с примесью. Воздействие на кристаллы ионизирующих излучений (v-квантов, электронов высоких энергий, рентгеновского и коротковолнового ультрафиолетового излучений) или прокалка кристаллов в парах щелочного металла приводит к возникновению точечных дефектов кристаллической решетки, локализующих на себе электроны или дырки. Стимулированное излучение возникает на электронно-колебательных переходах в таких образованиях. Схема генерации центров окраски аналогична схемам лазеров на красителе.  [c.957]

Нетрудно убедиться в том, что формулы типа (3,67) справедливы в случаях вакансии и атома примеси на узле. Формулы (3,66) и (3,67) могут быть легко обобщены [43] также на случай, когда в кристалле имеется не один, а несколько одинаковых точечных дефектов с небольшой относительной концентрацией, занимающих ряд положений Г(.  [c.75]

Наряду с объемной диффузией, которая протекает через точечные дефекты кристаллической решетки, в поликристаллическом теле имеются и дислокации, границы зерен, внутренние и наружные поверхности, через которые также протекает диффузия. В общем диффузия вдоль таких линейных и поверхностных дефектов, протекает быстрее, чем диффузия атомов через точечные дефекты в решетке кристалла. Имеются данные о том, что энергия активации диффузии по границам зерен в первом приближении равна примерно половине энергии активации объемной диффузии [62]. Вследствие более низкой энергии активации, относительное значение диффузии по границам зерен возрастает с увеличением тем- пературы медленнее, чем при объемной диффузии.  [c.51]


По аналогии с точечными, линейными и поверхностными дефектами следует отличать еще и группу объемных дефектов, к которым относятся скопления точечных дефектов типа пор, а также системы дислокаций, равномерно распределенных в объеме кристалла (зерна).  [c.12]

Анализ аналогичных измерений на кристаллах КС1, содержащих примеси Na+ и I-, проведенный Уолкером и Полом, также дает недостаточно хорошее согласие между экспериментальной величиной рассеяния на точечных дефектах и расчетным значением Клеменса. Не следует ожидать точного согласия, так как очень трудно рассчитать изменения в связях и искажения решетки, возникающие в результате введения примеси. Основной вывод состоит в том, что рассеяние может очень сильно отличаться от рассеяния, обусловленного изменением только массы для значительно более тяжелой примеси, такой, как ион иода, замещающий ион хлора, рассеяние в 1,4 раза превышает значение вследствие изменения массы, в то время как для иона Са +, замещающего ион К+ и имеющего почти одинаковую массу, рассеяние больше примерно в 80 раз.  [c.135]

Как и точечные дефекты, дислокации могут перемеш,аться в объеме кристалла. Вдоль лишнего слоя атомов краевая дислокация перемещается лишь благодаря диффузии вакансий и внедренных атомов. В зону сжатия (см. рис. 2.11) преимущественно попадают вакансии, а в зону растяжения — внедренные атомы, которые пристраивается к кромке лишнего атомного слоя. Процесс диффузии протекает во времени, и краевая дислокация как бы переползает из одной плоскости частичного сдвига кристалла в другую. В сплавах типа твердых растворов атомы примесей также благодаря диффузии собираются около дислокаций, образуя облака примесей. Причем в зоне сжатия располагаются атомы примесей с меньшими радиусами, а в зоне растяжения —с большими.  [c.85]

Попробуем оценить размеры вакансионных петель, которые могут образоваться вследствие пересыщения вакансиями при сжатии и служить в дальнейшем источниками образования и размножения дислокаций. Оценки проведем для двух случаев без учета наличия уже имеющихся в кристалле до деформации исходных ростовых петель и кластеров из точечных дефектов (А иВ кластеры), а также повышенной равновесной концентрации вакансий в поверхностном слое и с учетом этих факторов. В первом случае значение равновесной концентрации вакансий в Si получим из [357]  [c.101]

Практическая и научная актуальность проблемы исследования физической природы скрытых дефектов (ростовые кластеры точечных дефектов, а также вьщеления от распада твердого раствора примесей в процессе выращивания кристаллов и различных высокотемпературных технологических обработок полупроводникового материала — диффузионная загонка примеси, окисление, отжиг и т.д.) и изыскания технологических методов борьбы с ними обусловлены прежде всего тем обстоятельством, что так на-  [c.245]

Кроме того, следует отметить, что полученные данные могут служить основой для построения новых физических моделей процесса хрупкого разрушения, основанных не на традиционных схемах концентрации напряжений из-за различного рода неоднородностей дислокационной структуры, а за счет различного рода локальных неоднородностей распределения ансамбля кластеров из точечных дефектов различной мошности и природы [368, 691]. Таким образом, при определенных температурно-силовых и временных условиях стадия зарождения первичного очага концентрации напряжений и первичной трещины, а также последующая стадия развития хрупкой трещины должны рассматриваться с позиций изложенной выше модели диффузионно-дислокационной микропластичности. При этом теория должна рассматривать диффузионную стадию зарождения ансамбля кластеров различной мощности (т.е. с различным уровнем концентрации напряжений вблизи единичных кластеров), их рост и эволюцию в процессе вьщержки под нагрузкой (взаимодействие между собой, перераспределен е в размерах и др.). Т.е. взаимодействие между собой локальных источников перенапряжений от единичных кластеров в микрообъемах формирует общее макроскопическое поле внутренних напряжений в кристалле, ответственное за деформационное упрочнение кристалла, а также создает некоторую критическую ситуацию по пиковым напряжениям, превышающим в некоторой точке ансамбля прочность кристалла на разрыв [368, 691].  [c.259]


Микроструктура кристаллов НБС исследовалась методами травления и декорирования i[54J. Последний с помощью электронной или оптической микроскопии позволяет выявлять такие активные элементы поверхности кристаллов, как точечные дефекты и их скопления, а также элементы геометрического микрорельефа поверхности с различными электрическими свойствами [621.  [c.144]

На поверхности кристалла также возможно образование атом-вакансиопных состояний, так как поверхностный слой характеризуется сильными статическими смещениями и сопряжен с кристаллической подложкой. Поэтому многие проблемы поверхности целесообразно рассматривать в рамках представлений об атом-вакан-сионных состояниях. Данное обстоятельство в основном определяет аномально высокую активность ультрадисперсных систем, природу каталитической активности, аморфизацию Новерхности при ионной имплантации и др. Области атом-вакансионных состояний — основ-, ной исхочник дислокаций и точечных дефектов в деформируемых кристаллах. Возникновение таких областей в нагруженном кристалле обусловливает поворотные моды деформации, микродеформацию ниже предела текучести, ползучесть и хрупкое разрушение конструкционных материалов в условиях нейтронного облучения, Bejx-пластичность материалов в определенных условиях нагружения, усталостное разрушение при циклическом его характере.  [c.8]

В моделях, более близких к реальным, релаксация вблизи точечного дефекта не ограничивается лишь атомами из ближайшего окружения имеют место смещения атомов, которые постепенно уменьшаются с удалением от центра расширения или сжатия по трем измерениям. Тогда корреляция функции Паттерсона для кристалла с дефектами распространяется на большие расстояния. Рассеивающая способность при диффузном рассеянии обнаруживает постоянное повсеместное возрастание с увеличением 1и , кроме спада с /, и стремится образовать локальные максимумы вблизи положений узлов обратной решетки. Уменьшение резких пиков при возрастании угла, которое добавляется к спаду /, в первом приближении можно выразить как —р таким образом, оно имеет форму, подобную фактору Дебая—Валлера для теплового движения (см. также гл. 12). Такой результат получается из-за того, что при учете всех атомных смещений пики усредненной решетки (р(г)) размываются, как если бы мы делали свертку с какой-либо функцией, подобной гауссовой.  [c.160]

В 30—35 мы рассмотрим простейший случай изолированного точечного дефекта замещения, расположенного в узле идеальной решетки. При этом предполагается, что единственной характеристикой дефекта является его масса, отличаюихаяся от массы замещенного атома. В 30 определяется группа симметрии системы с дефектом — она представляет собой точечную группу узла, введенную в т. 1, 60. В 31, 32 устанавливается корреляция между фононами идеального кристалла и зонными колебаниями кристалла с дефектом вводятся также локальные колебания. В 33 кратко излагается динамическая теория решетки, содержащей изотопический дефект, и указывается, каким образом симметрия позволяет упростить (факторизовать) динамическую матрицу, подобно случаю идеального кристалла. В 34, 35 рассмотрены элементы теории инфракрасного поглощения и комбинационного рассеяния, причем основное внимание опять обращено на связь правил отбора с симметрией. Наконец, в 36 обсуждается вопрос о нарушении симметрии внешними агентами, например обобщенными напряжениями. Наибольший интерес, пожалуй, представляет та возможность, которую нарушение симметрии (дефекты и внешние напряжения) открывает для наблюдения процессов, обычно запрещенных в идеальном кристалле таким образом, нарушенная симметрия может быть мощным средством получения информации об идеальном кристалле.  [c.224]

По аналогии с точечными, линейными и поверхностными дефектами можно наметить группу объемных дефектов. Объемные дефекты согласно классификации не являются малыми во всех трех измерениях. К ним можно отнести скопления точечных дефектов типа пор, а также системы дислокаций, распределенных в объеме кристалла. Другими словами, благодаря наличию в кристалле точечных, линейных и плоских дефектов кристаллическая решетка может отклоняться от идеальной структуры в больших объемах кристалла. Кроме того, к объемным дефектам, например в монокристалле, можно отнести кристаллики с иной структурой или ориентацией решетки. В структуре кристалла будут значительные различия между центром дефекта и матрицей, а в матрице возникнут смещения атомов, убывающие с удалением от ядра дефекта. Таким образом, наличие фаз, дисперсных выделений, различных включений, в том числе неметаллических, неравномерность распределения напряжений и деформаций в макрообъемах также относятся к объемным дефектам.  [c.42]

Внедренные атомы являются точечными дефектами кристаллической решетки металла, вызывающими ее деформацию. Такая деформация, в частности, может иметь характер тетрагональных искажений, существенных для понимания свойств мартенситных фаз. Поля деформаций вызывают появление сил деформационного взаимодействия между внедренными атомами, важного для понимания ряда яв.лепий, происходящих в сплавах внедрения. В главе I, имеющей вводный характер, даетСуЧ обзор теорий точечных дефеютов кристаллической решетки металлов и сплавов, который мон ет иметь и самостоятельный интерес для специалистов, работающих в области физики неидеальных кристаллов. Точечные дефекты рассматриваются в рамках различных моделей (изотропный и анизотропный континуум, атомная модель, учет электронной подсистемы), причем эти модели применяются для определения смещений и объемных изменени1Г в кристалле, вызванных появлением дефекта, энергии дефекта, а также взаимодействия между точечными дефектами, приводящего к образованию их комплексов.  [c.7]


Локальные давления в кристаллической решетке возникают также в окрестности точечных дефектов — вакансий и примесных атомов. Связанная с вакансиями избыточная энергия решетки не превосходит 1 эВ на одну вакансию, т. е. почти на порядок меньше, чем для единичной Дислокации. Хотя суммарная энергия кристалла, связанная с вакансиями, может достигать существенной величины, эффект их влияния на растворение ничтожно мал. Действительно, подстановка этого значения энергии моновакансии в уравнения, аналогичные (111), дает совершенно ничтожную величину эффекта, а образование дивакансий, тривакан-сий и т. д. ничего не меняет, поскольку в отличие от плоских скоплений дислокаций энергия каждой кооперированной вакансии меньше, чем изолированной. Во всяком случае эффект не может превосходить величины, соответствующей равномерно распределенным в объеме дислокациям.  [c.114]

К. д. наблюдается для легких примесных частиц (атомов II или мюонов) в металлах, а также для разл, точечных дефектов в гелии твёрдом (вакапснй, изотопич. примесей, перегибов па дислокациях, дефектов поверхности). В последнем случае К. д. существенна для объяснения кристаллизационных волн. Для нек-рых точечных дефектов К. д. происходит только вдоль онредел. осей или плоскосте кристалла, а диффузия вдоль остальных направлений является чисто классической, К. д, приводит также к особеииостям внутр. трения в квантовых кристаллах.  [c.268]

Типы и концентрация устойчивых Р. д. определяются как условиями облучения, так и свойствами самих твёрдых тел. При этом для лёгких частиц и фотонов не слишком высоких анергий наиб, характерно образование устойчивых точечных дефектов (изолиров. вакансии или междоузельные атомы, дивакансии, комплексы компонентов пары Френкеля с примесными атомами и т. п.). При облучении нейтронами устойчивый кластер представляет собой дпваканспонное ядро, окружённое примесно-дефектными комплексами. При ионной бомбардировке плотность точечных дефектов в кластере больше, чем при нейтронной, и она тем выше, чем больше масса иона. При этом важную роль в формировании устойчивых кластеров играет процесс пространственного разделения вакансий п междоузельных атомов, предшествующий стадии квазихим. реакций. В силу этого устойчивые кластеры, возникающие при ионной бомбардировке, имеют более сложную структуру II состоят из вакансионных комплексов с разл. числом вакансий, примесно-дефектных комплексов, а также атомов внедрённой примеси. При облучении кристаллов тяжёлыми ионами устойчивые кластеры представляют собой локальные аморфные области.  [c.204]

ЦЕНТРЫ ОКРАСКИ—дефекты кристаллич. решётки, поглощающие свет в спектральной области, в к-рой собств. поглощение кристалла отсутствует (см. Спектры кристаллов). Первоначально термин Ц. о. относили только к т. н. / -центрам (от нем. Farbenzentren), обнаруженным в 1930-х гг. в шёлочно-галоидных кристаллах Р. В. Полем (R. W. Pbhl) с сотрудниками и представляющим собой анионные вакансии, захватившие электрон. В дальнейшем под Ц. о. стали понимать любые точечные дефекты, поглощающие свет вне области собств. поглощения кристалла,— катионные и анионные вакансии, междо-узельные ионы (собственные Ц. о.), а также примесные атомы и ионы (примесные Ц. о.), Ц. о. обнаруживаются во мн. неорганич. кристаллах и стёклах, а также в природных минералах.  [c.426]

Основную роль в образовании ростовых микродефектов в выращиваемых монокристаллах играют СТД — вакансии и межузельные атомы. В реальных условиях выращивания монокристаллов, уже на достаточно малых расстояниях от фронта кристаллизации возникают значительные пересыщения по СТД, обусловленные резкой температурной зависимостью их равновесных концентраций в алмазоподобных полупроводниках. Образующиеся избыточные неравновесные СТД аннигилируют на стоках, в качестве которых выступают боковая поверхность слитка и присутствующие в его объеме более крупномасштабные дефекты, прежде всего, дислокации. По отношению к СТд дислокации являются практически ненасыщаемыми стоками. С учетом высокой подвижности СТД при высоких температурах сток на дислокации (при достаточно высокой плотности последних в кристалле) играет основную роль в снятии пересыщения. Однако бездислокационные монокристаллы лишены такого рода эффективных внутренних стоков, а боковая поверхность слитка в силу чисто диффузионных ограничений не может обеспечить снятия пересыщения. В результате, в объеме кристалла образуются пересыщенные твердые растворы СТД, которые в процессе посткристаллизацион-ного охлаждения распадаются с образованием специфических агрегатов, получивших название микродефекты . Следует отметить, что в литературе отсутствует единая точка зрения по поводу определения понятия микродефект . Под этим термином мы будем понимать локальные нарушения периодичности кристаллической решетки, представляющие собой скопления точечных дефектов (собственных или примесных), не нарушающие фазового состояния основного вещества, а также дисперсные выделения второй фазы микронных и субмикронных размеров.  [c.48]

Т. Сузуки и Г, Сузуки [229], а также Андерсон и Малиновский [6] проводили эксперименты на кристалле LiF, которые объяснялись рассеянием на колеблющихся дислокациях. В первых экспериментах образцы подвергали сжатию, а затем для закрепления дислокаций их отжигали при 300 С в течение 10 мин, во вторых экспериментах образцы подвергали деформации сдвига, а потом для закрепления дислокаций облучали у-лучами. Андерсон и Малиновский обнаружили, что после облучения достаточной дозой у-лучей теплопроводность деформированного кристалла возвращается к значению, которое она имела до деформации (фиг. 8.9). Они заключили, что после деформации заметное уменьшение теплопроводности происходит вследствие рассеяния на подвижных дислокациях и для расчетов использовали модель Гарбера и Гранато [75] и модель Нииомия [178]. После облучения у-лучами дислокации уже не могут двигаться из-за образования точечных дефектов, так что теперь рассеяние происходит на сидячих дислокациях, как это было в случае, рассмотренном Клеменсом и другими. Как следует из экспериментов, верхний предел рассеяния на таких дислокациях теперь  [c.152]

Механизмы Френкеля и Шоттки в реальных кристаллах могут действовать независимо, и одновременно, а оба типа точечных дефектов — атомы в междоузлии и вакансии, двигаясь по кристаллу, дают свой вклад в общий массоперенос (диффузию) [38, 39]. Большое влияние на массоперенос оказывают также инородные примеси, растворенные в кристалле. В этом случае наряду с вакансиями и междоузель-ными атомами следует учитывать еще один тип точечных дефектов кристаллической решетки — дефекты замещения. Этим термином обозначают узлы решетки, занятые атомами другого сорта.  [c.34]

Изменение параметра решетки в приповерхностном слое рассматривается в [434] как один из видов "сторонней деформации кристалла, т.е. деформации, обусловленной иными причинами, чем внешнее напряжение сдвига. Так как упругая деформация, отвечающая теоретическому сопротивлению сдвига, составляет 3-5%, автор [434] приходит к заключению, что в поверхностном слое кристалла, где осуществлена деформация 3—10%, должно происходить термофлуктуационное зарождение дислока-ЦИ0Ш1ЫХ петель при малом внешнем приложенном напряжении. Кроме того, следует заметить, что даже такой очень малой по глубине от поверхности области аномалии в динамических параметрах решетки вполне достаточно для облегченных условий зарождения одиночного или двойного перегиба при движении дислокаций (см. п. 5.2), а также для снижения энергии образования точечных дефектов, в частности, вакансий, которые, как будет показано в а. 5.2, выше температурного порога хрупкости Г р контролируют движение дислокаций в модели с консервативно движущимися ступеньками, а ниже Гкр целиком определяют механизм низкотемпературной микропластичности в области низких и средних величин нагфяжений (см. гл. 7).  [c.132]


Первый член в правой части (7.4) представляет собой энергию упругого взаимодействия частицы с петлей второй — энергию дислокационной петли, третий — энергию, связанную с изменением концентрации точечных дефектов. Из этого выражения следует, что зарождение петли требует термоактивируемого преодоления энергетического барьера, который существенно зависит от параметра 1п(с/со), определяемого вакансионным пересыщением в случае образования вакансионной петли и вакансионным недосы-щением 1п(со/с) в случае образования петли внедрения. Как было показано в [601], экспериментально наблюдаемой высоте энергетического барьера 7 эВ соответствует значение параметра 1п(со/с) - 15. Это указывает на то, что вблизи частиц выделений практически нет свободных вакансий. При отжиге в электронном микроскопе тонкой фольги (до 3 мкм), приготовленной из закаленного кристалла, процесс образования дефектов развивается иначе [602]. В первые минуты отжига наблюдается образование преципитатов, однако в дальнейшем петли ими не генерируются. По-видимому, снятие напряжений около частиц обеспечивается вакансиями, диффундирующими к преципитатам с поверхности фольги, и отсутствует необходимость создания внутренних источников вакансий в виде дислокационных петель. Это, очевидно, также указывает на то, что для возникновения петель внедрения, помимо упругих напряжений, необходимо вакан-сионное недосыщение, которое в тонкой фольге не может достигнуть критической величины, необходимой для зарождения петли, из-за поверхности, являющейся источником вакансий.  [c.205]

Найденные значения активационного объема для Ge и Si находятся в пределах (0,65-1,0) см , а энергии активации порядка 0,07-0,08 эВ. Такие малые значения энергии активации по аналогии с результатами определения малых ее значений в работах по внутреннему трению в полупроводниках [586, 622—624], а также в ряде других работ [485,486j объяснялись нами ранее [58, 567, 568] с позиций истощения готовых геометрических перегибов на дислокациях, т.е. с помощью движения геометрических перегибов в поле барьеров Пайерлса второго рода. Однако на основании изложенных экспериментальных данных можно предполагать, что они относятся все же к диффузионной кинетике точечных дефектов в приповерхностных слоях полупроводниковых кристаллов.  [c.217]

Как уже отмечалось в п.4.3 и 7.2, наряду с чисто гетерогенным зарождением дислокаций по модели призматического вьщавливания их на включениях в определенном интервале действующих напряжений и температур может иметь место конденсационный механизм образования петель, размер которых определяется степенью деформационного пересыщения по точечным дефектам и процессами неконсервативного движения дислокаций. В работах [497 -500, 595, 607, 608] была весьма убедительно продемонстрирована начальная стадия работы источников Франка-Рида на так называемых Л-кластерах, т.е. ростовых петлях вакансионного и внедренного типа. Таким образом, основными центрами зарождения и размножения дислокаций в полупроводниковых кристаллах являются скопления вакансий, меж-узельных атомов, а также преципитатов примесей, возникающих при распаде пересыщенного твердого раствора. Однако в дополнение указанного авторами [497-500, 595, 607, 608] механизма размножения следует также отметить тот факт, что генерация дислокаций от ростового типа гетерогенностей в общем случае, по-видимому, все же является частным вариантом размножения.  [c.243]

Более общим вариантом является такая ситуация, когда спектр таких гетерогенностей создается или непосредственно в процессе цикла нагружения за счет пересыщения по точечным дефектам (в этом случае процесс размножения может идти и без участия ростовыхвьщелений), или же, если спектр ростовых дефектов все же присутствует, то он должен существенно трансформироваться и видоизменяться в процессе нагружения (например, растворение петель внедренного типа и рост петель вакансионного типа или наоборот, а также создание дополнительного спектра гетерогенных источников чисто деформационного происхождения — за счет конденсации точечных дефектов при их пересыщении в нагруженном кристалле).  [c.243]

Как частный случай безактивационного надбарьерного скольжения он также возможен и при Т< Г р, но уже при очень высоких величинах напряжений порядка т Ттеор- Поскольку в исходных кристаллах как в процессе роста непосредственно, так и в процессе специальных термообработок, вызывающих распад твердого раствора примесей, создается спектр гетерогенных вьщелений (Л- и 5-кластеры, частицы Si , SiOj, и др.), он и является одним из основных каналов гетерогенного зарождения и размножения дислокаций. Кроме того, в процессе нагружения (сжатие, растяжение, кручение, изгиб и пр.) вследствие общего изменения химического потенциала точечных дефектов создается дополнительный спектр дислокационных источников за счет конденсации точечных дефектов (в общем случае вакансий и межузлий). Он играет немаловажную роль в процессе начальной стадии деформации. Более того, он играет, по-видимому, главную и определяющую роль в случае деформации очень совершенных кристаллов (в смысле минимального наличия в них исходных ростовых скоплений точечных дефектов и примесей) и особенно при использовании малых скоростей нагружения, а также специальных режимов программированного или циклического нагружения.  [c.244]

Таким образом, физическая природа интенсификации микропластичес-кого течения в поверхностных слоях материалов и последующего усталостного разрушения при циклических нагрузках должна рассматриваться именно с указанных позиций. При этом следует отметить, что необратимое действие вакансионного насоса при циклировании, создающего спектр приповерхностных источников дислокаций и вызывающего их переползание, обеспечивается не только созданием периодического пересыщения при цикле сжатия и существующим недосыщением на стоках [601, 602], но и различием потенциальных энергетических барьеров на источниках и стоках точечных дефектов, непосредственно на поверхности и в более удаленных от поверхности приповерхностных слоях. Поэтому полученные в главе 7 результаты представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур. Наконец, учитывая результаты работы [586], следует также весьма осторожно относиться к интерпретации низкотемпературных пиков внутреннего трения и помнить, что они могут появиться в ряде случаев именно в силу проявления методических особенностей способа нагружения (использование циклических изгибных или крутильных колебаний с максимальной величиной напряжений вблизи свободной поверхности и присутствием градиента напряжений по сечению кристалла).  [c.258]

Дефекты типа вакансий и внедренных атомов называются точечными. Точечные дефекты типа вакансий образуются в металлах в результате резкого охлаждения (закалки). Вакансии могут образовываться также в процессе пластической деформации, т. е. в процессе движения дислокаций. Кроме того, вакансии и атомы внедрения могут образовываться и в результате нейтронного облучения кристаллов. При этом упругое столкновение движущейся частицы с атомом облучаемого вещества смещает последний из равновесного положения в решетке, что и приводит к образованию межузельного атома и вакансии (френкелевской пары) [76.  [c.26]

Техника ионной имплантации позволяет вводить в матрицу контролируемую концентрацию вещества. Эта техника стала развиваться после того, как было обнаружено, что в ионных кристаллах, бомбардируемых ионами металлов, кроме точечных дефектов, образуются также и металлические кластеры [65—691. Например, когда в монокристаллы LiF при колшатной температуре имплантировали 2 10 атомов 1п/см с энергией 100 кэВ, то, как показали спектры оптического поглощения, в ходе последующей термообработки, проводимой по 30 мин при температурах 150, 250, 350, 400, 450, 500, 600° С, кластеры индия сначала возникали и росли, а затем постепенно исчезали 167]. Первичная концентрация In составляла при этом 6 ат.%. Максимальное число имплантированных ионов In, принимающих участие в образовании кластеров, не превышало 37% при f = 350° С. Нагревание кристаллов выше 350° С приводило к постепенному растворению кластеров.  [c.21]


Смотреть страницы где упоминается термин Точечные дефекты II 234. См. также Дефекты в кристаллах : [c.31]    [c.147]    [c.89]    [c.42]    [c.235]    [c.331]    [c.579]    [c.82]    [c.6]    [c.100]    [c.182]    [c.183]    [c.199]    [c.232]    [c.280]   
Физика твердого тела Т.2 (0) -- [ c.0 ]



ПОИСК



Дефекты в кристаллах

Дефекты в кристаллах дефектов

Дефекты кристаллов точечные

Дефекты точечные

См. также Дефекты в кристаллах



© 2025 Mash-xxl.info Реклама на сайте