Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Валентные электроны свободных электронов

Химический механизм в виде проходящей на одном и том же участке поверхности в одну стадию и независящей от потенциала металла химической реакции без участия свободных электронов, когда металл, отдавая окислителю валентные электроны, вступает с ним в химическое соединение или образует ионы, может иметь место и в электролитах  [c.180]

Уровень или граница Ферми Wf определяется концентрацией электронов, т. е. зависит от расстояния между атомами и валентности металла. При числе п свободных электронов  [c.31]


Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, со- давая электронный ток проводимости.  [c.154]

Учет вклада свободных электронов в теплоемкость металлов. По современным представлениям металл рассматривается как совокупность системы положительно заряженных ионов, колеблющихся около их средних положений равновесия в кристаллической решетке, и системы относительно свободных коллективизированных валентных электронов, образующих в металле своеобразный газ.  [c.176]

Одновременно с процессом образования свободных носителей генерацией) идет процесс их исчезновения рекомбинации). Часть электронов возвращается из зоны проводимости в валентную зону и заполняет разорванные связи (дырки). При данной температуре за счет действия двух конкурирующих процессов генерации и рекомбинации в полупроводнике устанавливается некоторая равновесная концентрация носителей заряда. Так, например, при комнатной температуре концентрация свободных электронов и дырок составляет в кремнии примерно 10 ° см 3, в германии приблизительно Ю з см-з.  [c.242]

Приписав электронам в зоне проводимости и дыркам в валентной зоне эффективные массы, мы можем считать их свободными и воспользоваться выражением для электропроводности, полученным в модели свободных электронов Друде —Лорентца. Так, например, согласно (6.90) электронная составляющая тока  [c.243]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]


Экситонное поглощение. До сих пор мы рассматривали поглощение света, приводящее к образованию свободных электронов и дырок. Однако возможен и другой механизм поглощения, при котором электрон валентной зоны переводится в возбужденное состояние, но остается связанным с образовавшейся дыркой в водородоподобном состоянии. Энергия образования такого возбужденного состояния, называемого экситоном, меньше ширины запрещенной зоны, поскольку последняя есть не что иное, как минимальная энергия, требуемая для создания разделенной пары. Экситон может перемещаться в кристалле, но фотопроводимость при этом не возникает, так как электрон и дырка движутся вместе. Экситоны могут достаточно легко возникать в диэлектриках, так как D них кулоновское притяжение электрона и дырки значительно. В полупроводниках это притяжение мало и поэтому энергия связи экситона также мала. Вследствие этого экситонные орбиты охватывают несколько элементарных ячеек кристалла (радиус орбиты -"15 нм). В металлах экситонное поглощение очень маловероятно.  [c.310]

В полупроводниках со сложным строением энергетических зон возможны непрямые переходы электронов из зоны проводимости в валентную зону, сопровождающиеся излучением фотона. В этом случае рекомбинация свободного электрона и дырки идет с участием фонона, что обеспечивает сохранение квазиимпульса. Наиболее вероятно излучение фонона. Если в полупроводнике протекают как прямые, так и непрямые процессы межзонной рекомбинации, то в спектре излучения наблюдается две полосы люминесценции.  [c.315]

Ранее отмечалось, что смещения в пространстве волновых векторов на расстояния, кратные 2п/а, физически ничего не меняют. Воспользуемся этим и приведем кривые дисперсии для обобществленного электрона к одной (первой) зоне Бриллюэна тогда вместо рис. 6.9 будем иметь рис. 6.10. На нем штриховкой выделены две разрешенные энергетические зоны 1 — зона проводимости и 2 — валентная зона. Они разделены запрещенной зоной шириной АЕ. В пределах области, выделенной на рисунке штриховой линией, кривые дисперсии как в зоне проводимости, так и в валентной зоне имеют квадратичный характер следовательно, здесь справедлива модель свободных электронов. Правда, масса этих электронов может отличаться от электронной массы кроме того, обратная кривизна квадратичной кривой Б валентной зоне указывает на то, что здесь должна использоваться отрицательная масса. Отрицательности массы можно избежать, если рассматривать в валент-  [c.142]

Согласно классической теории колебаний кристаллической решетки (гл. I, 9) простые металлы (литий, натрий, калий, цезий, рубидий) должны иметь теплоемкость, равную примерно 25 Дж/(моль-К). Однако в суммарную теплоемкость, кроме колебаний решетки, должны были бы делать вклад и валентные (свободные) электроны, так как их кинетическая энергия при повышении температуры может возрастать. Если каждый электрон дает вклад в теплоемкость независимо от остальных электронов, то его можно рассматривать как атом моноатомного газа и считать его тепловой энергией величину 3/2 коТ. Поэтому следует ожидать, что вклад в теплоемкость от одного электрона равен 3/2ко. Электронная теплоемкость одного моля> электронов должна составить примерно 12,5 Дж/(моль-К), и, следовательно, полная теплоемкость простого одновалентного металла (теплоемкость решетки и электронов) должна бы равняться примерно 37,5 Дж/(моль-К). Эксперименты показывают, что это значение слишком велико наблюдаемые значения теплоемкости почти никогда не превышают 25 Дж/(моль-К).  [c.124]

Вывести выражение для радиуса Ферми в приближении свободных электронов для трехмерной решетки, содержащей N атомов в единице объема, валентность которых равна Z.  [c.54]

Найдите межатомные расстояния для ГЦК кристаллов с валентностью 2=1, 2, 3 в приближении а) свободного электронного газа Ферми с учетом вклада электростатической энергии б) свободного электронного газа Ферми с учетом электростатической, обменной и корреляционной энергий  [c.123]


В зоне проводимости, особенно вблизи ее дна, электронный спектр близок к спектру свободных электронов. Энергия электронов в кристаллах и волновая функция являются многозначными функциями волнового числа (см. 66). Это позволяет смещать спектр по волновому числу по определенным правилам. Условливаются, что волновое число должно всегда находиться в первой зоне Бриллюэна. Не вдаваясь в подробности определения этой зоны, заметим лишь, что такое условие требует для характеристики энергии и волновой функции использовать значения волнового числа, лежащие в интервале от нуля до некоторого максимального. Этот интервал различен по разным направлениям. Такой способ классификации электронных состояний в кристалле называется схемой приведенных зон. В ситуации, изображенной на рис. 117, это позволяет поместить начало кривой Е = Е(к) зоны проводимости на одну вертикаль с началом кривой Е = Е(к) валентной зоны. Тогда становится очевидным, что зависимость Е = Е к) в зоне проводимости действительно близка к соответствующей зависимости для свободного электрона. Однако рассмотрение скорости электрона одинаково удобно провести и без схемы приведенных зон, потому что ход производной dE/dk не зависит от смещения спектра по оси к.  [c.352]

Таким образом электропроводность в полупроводниках осуществляется перемещением отрицательно заряженных свободных электронов в зоне проводимости и положительно заряженных дырок в валентной зоне. При любой температуре количество (концентрация) электронов в зоне проводимости и дырок в валентной зоне равны. Это справедливо для чистых полупроводников (при отсутствии атомов примеси), которые называют собственными или с собственной электропроводностью (/-типа) и обладают наименьшей для данного материала электропроводностью.  [c.8]

Коэффициент оптического поглощения пленок а-51 Н при большей энергии фотонов резко возрастает, так как эта энергия становится сравнимой с шириной запрещенной зоны материала. Следовательно, энергии оказывается достаточно для перевода электронов из валентной зоны в зону проводимости. Такой перевод электронов означает также увеличение концентрации как свободных электронов в зоне проводимости, так и д1.фок в валентной зоне, что ведет, как известно, к росту электропроводности материала.  [c.19]

При введении в кремний атома элемента V группы Периодической системы элементов Д. И. Менделеева (например, мышьяка As) четыре из пяти его валентных электронов вступают в связь с четырьмя валентными электронами соседних атомов кремния и образуют устойчивую оболочку из восьми электронов. Девятый электрон оказывается слабо связанным с ядром пятивалентного элемента, он легко отрывается и превращается в свободный электрон (рис. 3.5, в), дырки при этом не образуется. На энергетической диаграмме этот процесс соответствует переходу электрона с уровня доноров (f jj в свободную зону (рис. 3.5, г). Примесный атом превращается в неподвижный ион с единичным положительным зарядом. Примесь этого типа называется донорной, а полупроводники, в которые введены атомы доноров, - электронными или п-типа электропроводности. В таких полупроводниках свободных электронов больше, чем дырок, и они обладают преимущественно электронной электропроводностью.  [c.51]

Если в кремний введен атом трехвалентного элемента Ш группы Периодической системы элементов Д. И. Менделеева (например, бора В), то все три его валентных электрона вступают в связь с четырьмя электронами соседних ато-.мов кремния. Для образования устойчивой оболочки из восьми электронов не хватает одного. Им является один из валентных электронов, отбираемый от ближайшего соседнего атома, у которого в результате образуется незаполненная связь - дырка (рис. 3.5, д). На энергетической диаграмме этот процесс соответствует переходу электрона из валентной зоны на уровень акцепторов Wa и образованию в валентной зоне дырки (рис. 3.5, е). Примесный атом превращается в неподвижный ион с единичным отрицательным зарядом, свободного электрона при этом не образуется. Примесь такого типа называется акцепторной, а полупроводники, в которые введены атомы акцепторов, - дырочными или р-типа электропроводности. Дырок в них больше, чем свободных электронов. Поэтому эти полупроводники обладают преимущественно дырочной электропроводностью.  [c.51]

Рассмотрим собственный полупроводник. При температуре Г=0 К все энергетические уровни валентной зоны заполнены электронами, а уровни зоны проводимости - свободны. С повышением температуры некоторое количество электронов покидает валентную зону и переходит в зону проводимости. Распределение электронов и дырок по энергиям в твердом теле описывается статистикой Ферми - Дирака. Согласно этой статистике вероятность того, что состояние с некоторой энергией Ш при температуре Т будет занято электроном, определяется функцией Ферми - Дирака  [c.52]

Введение в полупроводник примесных атомов приводит к нарушению в нем стехиометрического состава и периодичности кристаллической решетки. Примеси вносят в структуру полупроводника дополнительные квантовые уровни, отличающиеся от зонной структуры уровней основного кристалла. В полупроводниках примеси в зависимости от их природы и природы полупроводников могут образовывать п- или р-проводимости. Примеси, образующие и-проводимость, должны иметь большую валентность, чем валентность, основного полупроводника примеси, создающие р-проводимость, должны иметь валентность меньшую по сравнению с валентностью основного полупроводника. Например, для четырехвалентного германия пятивалентные примеси As, Р, Sb и др. создают электронную проводимость, поскольку четыре атома примеси, занимая в кристаллической решетке германия определенные узлы, образуют ковалентные связи с соседними атомами германия, а избыточный (пятый) электрон внешней орбиты мышьяка остается свободным. Такие свободные электроны создают электронную проводимость. Примеси, освобождающие электроны, называются донорами, а соответствующие им энергетические уровни — донорными  [c.282]


С повышением температуры из-за увеличения тепловой энергии некоторые электроны разрывают ковалентную связь и появляются в зоне проводимости (рис. 8.2, о). В кристалле собственного полупроводника каждому электрону в зоне проводимости соответствует одна дырка, оставленная им в валентной зоне. В этом случае свободный электрон обладает энергией, большей той, которую он имел в связанном состоянии, на величину не менее энергии ширины запрещенной зоны.  [c.268]

Если теперь в полупроводник IV группы таблицы Менделеева ввести элемент III группы, например алюминий, то все три валентных электрона примесного атома будут участвовать в образовании ковалентных связей, одна из четырех связей с ближайшими атомами основного вещества окажется незавершенной (рис. 8.1, в). В незаполненную связь около атома алюминия за счет тепловой энергии может перейти электрон от соседнего атома основного вещества. При этом образуются отрицательный ион алюминия и свободная дырка, перемещающаяся по связям основного вещества и, следовательно, принимающая участие в проводимости кристалла. Примесь, захватывающая электроны, называется акцепторной. Для образования свободной дырки за счет перехода электрона от атома основного вещества к атому примеси требуется значительно меньше энергии, чем для разрыва ковалентных связей кремния. В силу этого количества дырок может быть значительно больше количества свободных электронов и проводимость кристалла будет дырочная.  [c.270]

В случае германия примесями первого вида служат элементы пятой группы, например, мышьяка с 5 электронами на внешней оболочке. При замещении германия мышьяком его четыре электрона образуют валентные связи с четырьмя соседними атомами германия. Пятый электрон внешней оболочки мышьяка не может образовать связи с ближайшими атомами и поэтому он легко освобождается. Для этого требуется ничтожно малая энергия — 0,013 эв. Появление свободного электрона в этом случае не сопровождается возникновением дырки, так как ни одна из связей не нарушается. Атом мышьяка приобретает положительный заряд, но он не может, перемещаться.  [c.173]

Неорганические стекла обладают во многих случаях полупроводниковыми свойствами. Теория аморфных полупроводников указывает, что при плавлении кристаллов нарушается только- дальний порядок симметрии, ближний же порядок сохраняется. Энергетический спектр стеклообразного полупроводника состоит также из зон, как и у кристаллического, но из-за разупорядоченного строения происходит расширение валентной и свободной зон и сужение запрещенной зоны. В отличие от обычных стекол с преобладанием ионной проводимости стеклообразные полупроводники обладают чисто электронной проводимостью.  [c.192]

J — атом кремния 2 — ковалентная связь 73 — валентные электроны 4 — свободный электрон i — дырка 6 — атом прнмеси С проводимостью л-тииа 7 — атом примеси с проводимостью р-типа  [c.98]

Таким образом, эффективная масса электрона существенно зависит от ширины энергетической зоны, к которой он принадлежит. Электроны широкой валентной зоны 3s, обладающие высокими скоростями поступательного движения по кристаллу, имеют эффективную массу, практически равную эффективной массе свободного электрона. Электроны же узкой внутренней зоны Is, перемещающиеся по кристаллу с ничтожно малой скоростью, имеют колоссальную эффективную массу, на много порядков превышающую массу свободного электрона.  [c.151]

Согласно зонной теории в кристаллической решетке твердого тела вследствие взаимодействия между электронами соседних атомов создается зона энергетических уровней электронов решетки. Зоны энергии в кристаллах твердого тела подразделяются на полностью занятые электронами — основные (валентные) зоны и частично или целиком не заполненные электронами — свободные зоны (зоны проводимости). Существенное различие между состояниями двух групп электронов ( в основной и свободной зонах) определяется различной степенью связи электронов с атомами в этих зонах. В отличие от валентной зоны в зоне проводимости электроны слабо связаны со своими атомами. В общем случае между основной и свободной зонами существует некоторое энергетическое расстояние АЕз — запрещенная зона, в отличие от которой основную и свободную зоны называют разрешенными. Для перехода электрона из основной зоны в свободную его энергия должка превысить верхний уровень основной зоны па величину, не меньшую ДБз переход из одной зоны в другую осуществляется путем поглощения или отдачи электроном этой энергии.  [c.36]

Атомы металлов, отдавая часть валентных электронов, превращаются в положительно заряженные ионы. Свободные электроны непрерывно перемещаются между иона ми. Они принадлежат не какому-либо одному ядру, а всему объему металла, образуя легкоподвижный так называемый электронный газ.  [c.8]

У атомов В, А1, Оа и др. в их основном состоянии з р должна была бы быть только одна р-валентность. Однако конфигурация хр при гибридизации приводит к трем эквивалентным орбиталям, оси которых расположены в одной плоскости и направлены под углом 120° друг к другу (см. разд. 2, стр. 314). Таким образом можно понять трехвалентность атомов В, А1, Оа и др., а также наблюдаемые плоские конфигурации таких молекул, как ВЕз, ВС1з и т. п. с симметрией точечной группы Х>зд. Плоская симметричная структура далее стабилизируется за счет того, что обменные интегралы между несвязанными электронами имеют для такой конфигурации минимальные значения, а также за счет того, что электроны свободных электронных пар атомов галогенов могут использовать р -орбиталь, не затронутую при яр -гибридизации.  [c.374]

Названные специфические свойства, по-существу, обусловлены наличием в металлах свободных электронов. Металлическая связь возникает при взаимодействии атомов электрополоэ/сительных элементов, внешние валентные электроны которых связаны с ядром относительно слабо. При образовании твердого состояния в результате перекрытия волновых функций металлических атомов (например, атомов Na) движение электронов, как и в случае ковалентной связи, претерпевает радикальное изменение, и электроны обобществляются. При этом каждая соседняя пара электронов предпочла бы образовать молекулу, с тем чтобы поделить себя между двумя атомами. Но у кал<дого атома Na в твердом состоянии имеется в среднем восемь соседей и только один валентный электрон,, который должен быть поделен с каждым из этих соседей. В отличие от случая ковалентной связи, когда пара электронов, в основном, курсирует между двумя соседними атомами, коллективизированному электрону в металле приходится совершать довольно сложный путь, посещая по очереди каждый атом (положительный ион) твердого тела. В описанной ситуации все ионы обладают всеми электронами вместе, а электроны могут свободно перемещаться от одного иона к- другому.  [c.82]

Допустим, что валентная зона заполнена электронами полностью, но она перекрывается со следующей разрешенной зоной, не занятой электронами. Если к такому кристаллу приложить внешнее электрическое поле, то электроны начнут переходить на уровни свободной зоны и возникнет ток. Данный кристалл также является металлом. Типичный пример металла с указанной зонной структурой магний. У каждого атома Mg ls 2s22p 3s2) в валентной оболочке имеется два электрона. В кристаллическом магнии валентные электроны полностью заполняют Зх-зону. Однако эта зона перекрывается со следующей разрешенной зоной, образованной из Зр-уровней.  [c.230]


В полупроводнике, содержа- рочного (б) полупроводников щем акцепторную примесь, электроны легко переходят из валентной зоны на акцепторные уровни. При этом в валентной зоне образуются свободные дырки. Количество свободных дырок здесь значительно превышает количество свободных электронов, образовавшихся за счет переходов из валентной зоны в зону проводимости. Поэтому дырки являются основными носителями, а электроны — неосновными. Проводимость полупроводника, содержащего акцепторную примесь, имеет дырочный характер, а сам полупроводник в соответствии с этим назьь вается дырочным (или акцепторным).  [c.251]

Вывод гамильтониана. Чтобы сформулировать задачу расчета взаимодействия между электронами и фононами в металле, мы выведем здесь выражение для гамильтониана в форме, где с самого начала включено куло-новское взаимодействие между электронами и движениями ионов, но в то же время сделаны некоторые приближения для упрощения уравнений. Например, можно пренебречь анизотропией, которая, по-видимому, не очень существенна для проблемы сверхпроводимости. Предполагается, что колебания решетки можно разделить на продольные и поперечные и что электроны взаимодействуют только с продольными компонентами. Это приближение справедливо для волн с большой длиной волны, но неправильно для коротких волн (исключая некоторые напрапления распространения). Предположим также, как это часто делается в теории Блоха, что матричные элементы для электронно-фононного и кулоновского взаимодействий зависят лишь от разности волновых векторов в начальном и конечном состояниях. При вычислении кулоновских взаимодействий сделаны предположения, которые равнозначны рассмотрению валентных электронов как газа свободных электронов.  [c.757]

Чистый совершенный полупроводник (например, 51, дл которого АЕ 1,1 эВ) вблиаи абсолютного нуля ведет себя как изолятор. С повышением температуры наступает такой момент, когда энергии теплового возбуждения достаточна для массового переброса электронов из валентной зоны в зону проводимости. В результате такого перехода в зоне проводимости появятся электроны, а в валентной зоне — свободные от электронов энергетические уровни, которые, можно в разумных границах ассоциировать с положительными зарядами (дырками). В отсутствие внешнего электрического поля электроны и дырки совершают хаотическое движение. При включении внешнего электрического поля осуществляется направленное движение носителей заряда (дрейф) причем электроны двигаются преимущественно против поля,, а дырки —по направлению поля.  [c.84]

Модель свободных электронов. Основываясь на модели свободных электронов, можно объяснить целый ряд важных физических свойств металлов. Согласно этой модели наиболее слабо связанные (валентные) электроны составляющих металл атомов могут довольно свободно перемещаться в О бъе.ме кристаллической решетки. Указанные валентные электроны становятся носителями электрического тока в металле, отсюда и их название — электроны гараводимости. В приближении свободных электронов можно пренебречь силами взаимодействия между 1валентными электронами и ионными остовами. Предполагается, что полную энергию электронов проводимости можно считать равной их кинетической энергии, а потенциальной можно пренебречь.  [c.103]

Атомы в кристаллической решетке кремния и ряда других полупроводников связаны друг с другом за счет обменных сил, возникающих в результате попарного объединения валентных электронов соседних атомов, при этом каждый из атомов остается электрически нейтральным. Такая связь называется ковалентной. Повышение температуры вызывает колебательное движение атомов кристаллической решетки. В результате ковалентные связи между атомами могут разрываться, что приводит к образованию пары носителей заряда свободного электрона и незаполненной связи - дырки - вблизи того атома, от которого оторвался электрон. Процесс образования электронно-дырочнь1х пар называется генерацией носителей заряда Если этот процесс происходит под воздейст-вие.м теплоты, то его называют термогенерацией.  [c.49]

Коэффициенты и в приведенных выражениях называются эквивалент-ньпии плотностями состояний соответственно электронов и дырок. Если предположить, что все свободные электроны сконцентрированы вблизи дна зоны проводимости, а дырки - вблизи потолка валентной зоны, их концентрации можно рассчитать по формулам  [c.54]

Под воздействием внешнего электрического поля напряженностью Е на полупроводник его энергетические зоны становятся наклонными. о происходит из-за добавления к энергии электрона в полупроводнике в случае отсутствия внешнего поля дополнительной энергии, обусловленной внешним электрическим полем. Как видно из рис. 8.5 (горизонтальные переходы / и 2), в сильном электрическом поле при наклоне зон возможен переход электрона из валентной зоны и примесных уровней в зону проводимости без изменения энергии — путем туннельного просачивания электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией. Она возможна в электрических полях с напряженностью порядка Id В/м. Если свободный электрон под действием внешнего электрического поля приобрета-  [c.274]

Собственная проводимость. Полупроводник, не содержащий примесей, в нормальных условиях обладает так. называемой собственной проводимостью. Например, в германии — элементе IV группы — между атомаг.ш в кристаллической решетке существуют парноэлектронные (ковалентные) связи под влиянием теплового движения появляются свободные электроны и часть ковалентных связей нарушается. Одновременно со свободными электронами появляются и положительные носители, так называемые дырки. Понятие дырки означает вакантное место — недостаток электрона в атоме и нарушение одной из связей. Вакантное место может запять валентный электрон соседнего атома тогда нарушенная связь восстанавливается, по зато исчезнет связь в другом месте, откуда был переброшен электрон там появится дырка. Хотя этот процесс представляет собой переход электрона, он вместе с тем сопровождается как бы перемещением дырки в противоположном направлении.  [c.171]

Примесямк второго вида для германия служат элементы третьей группы, например, индия, на внешней оболочке которого имеется три валентных электрона. При замещении атома германия индием возникают связи лишь с тремя атомами, а с четвертым — связь оказывается нарушенной. Для заполнения этой связи атом индия захватывает один из электронов, образующих валентную связь в кристалле, и дополняет свою внешнюю оболочку четвертым электроном для этого требуется незначительная энергия — 0,011 эв. Однако при этом нарушается одна из валентных связей между близлел<ащими атомами германия, откуда был захвачен этот электрон, т. е. образуется дырка. Возникновение дырки не сопровождается появлением свободного электрона. Атом индия приобретает отрицательный заряд, но этот заряд не может являться носителем.  [c.173]

Вопрос о смещениях атомов вокруг точечного дефекта рассматривался выше без учета электронной структуры металла. Учет электронной подсистемы кристалла приводит при исследовании этого вопроса к некоторым новым результатам. Для выяснения лишь их общей качественной стороны ограничимся простейшей моделью газа свободных электронов проводимости. Появление точечного дефекта сопроволедается изменением распределения зарядов в металле. В случае вакансии удаление положительного иона вызывает появление на его месте эффективного отрицательного заряда, отталкивающего электроны проводимости. При добавлении примесного атома его валентные электроны могут перейти в электронный газ и в результате появится соответствующий заряд в месте расположения иона примеси. Этот заряд, как и в случае вакансии, экранируется электронами проводимости. Таким образом, появление дефекта сопровонсдается измененпем пространственного распределения плотности электронов, соответствующим изменению их волновых функций.  [c.86]

Металлические кристаллы. Внешние валентные электроны в атомах металлов связаны относительно слабо. При сбразованни твердого состояния атомы располагаются настолько близко друг от друга, что валентные электроны приобретают способность покидать свои атомы и свободно перемеш,аться внутри решетки. Такое обобществление электронов приводит к однородному распределению их в решетке металла. Связь возникает вследствие взаимодействия положительных ионов решетки с электронным газом электроны, находящиеся между ионами, стягивают их, уравновешивая силы отталкивания, действующие между самими ионамп.  [c.20]


Однако с повышением температуры вследствие термического возбуждения электронов валентной зоны часть из них приобретает энергию, достаточную для преодоления запрещенной зоны и перехода в зону проводимости (рис. 5.6, б). Это приводит к появлению в зоне проводимости свободных электронов, а. в валентной зоне — свободных уровней, на которые могут переходить электроны этой зоны. При приложении к кристаллу внешнего поля в нем возникает направленное движение электронов зоны проводимости и валентной зрны, приводящее к появлению электрического тока. Кристалл становится проводящим. Чем меньше ширина запрещенной зоны и выше температура, тем больше электронов переходит в зону проводимости и тем выше должна быть электропровод-  [c.154]


Смотреть страницы где упоминается термин Валентные электроны свободных электронов : [c.230]    [c.143]    [c.353]    [c.51]    [c.15]    [c.84]    [c.176]    [c.6]   
Физика твердого тела Т.2 (0) -- [ c.72 ]

Физика твердого тела Т.1 (0) -- [ c.72 ]



ПОИСК



Валентность

Валентных валентность

Основное состояние молекулы Н20.— Основное состояние молекулы — Основное состояние молекулы СН4.— Основное состояние молекулы С02.— Основное состояние молекулы С2Н4.— Насыщение валентностей.— Основное состояние молекулы С6Н6.— Сопряжение и сверхсопряжение.— Взаимодействие конфигураций.— Модель свободного электрона.— Молекулы, содержащие атомы переходных элементов (так называемая теория поля лигандов) Возбужденные состояния

Электрон валентный

Электроны свободные



© 2025 Mash-xxl.info Реклама на сайте