Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники основные

В электронном полупроводнике основными носителями заряда являются электроны, поток их от горячего конца к холодному будет больше, че.м от холодного к горячему. В результате этого на холодном конце будет накапливаться  [c.73]

В таком полупроводнике основными носителями заряда будут дырки, а неосновными — электроны.  [c.270]

В электронном полупроводнике основными носителями заряда, как известно, являются электроны, поток их от горячего конца к холодному будет больше, чем от холодного к горячему. В результате этого на холодном конце будет накапливаться отрицательный заряд, на горячем оставаться нескомпенсированный положительный. Возникшее электрическое поле будет вызывать поток электронов от холодного конца к горячему. Стационарное состояние установится при равенстве этих электронов. У дырочного полупроводника на холодном конце возникнет положительный заряд. Таким образом, по знаку термоЭДС можно судить о типе электропроводности полупроводника.  [c.277]


Полупроводники бывают простые и-сложные. Полупроводник, основной состав которого образован атомами одного химического элемента, будет простым. Полупроводник, основной состав которого образован атомами двух или большего числа химически)б элементов, будет- сложным.  [c.568]

Показатель преломления п(0). Для диэлектриков и слаболегированных полупроводников основной вклад в поляризуемость при не слишком высоких температурах, когда (20- 30)кв, дают  [c.74]

Если работа выхода электрона из металла меньше работы выхода из электронного полупроводника (Ф < Ф ), то после соприкосновения электроны из металла устремятся в полупроводник, обогащая приконтактный слой полупроводника основными носителями заряда и тем самым создавая слой в полупроводнике с повышенной проводимостью, который называют обогащенным слоем. Энергетическая схема контакта металл — полупроводник для этого случая представлена на рис. 10.2, б.  [c.73]

Таким образом, наличие поверхностных уровней приводит к обогащению или обеднению приповерхностного слоя полупроводника основными носителями заряда, а при определенных условиях и к образованию инверсного слоя.  [c.80]

Для большинства полупроводников основным является изменение концентрации носителей заряда, определяемое энергией активации. Так как ширина запрещенной зоны может как увеличиваться, так и уменьшаться при сближении атомов, то у различных полупроводников одна и та же деформация может вызывать как увеличение, так и уменьшение удельной проводимости.  [c.335]

Если полупроводник легирован донорами, то количество электронов в зоне проводимости значительно превышает число дырок в валентной зоне. Электроны в таком полупроводнике - основные носители  [c.248]

Выше был отмечен ряд указаний на то, что в жидких полупроводниках основную роль играет молекулярная структура. Термохимические данные дают мощное средство для получения выводов о существовании соединений в бинарных сплавах и, следовательно, являются потенциальным источником информации о структуре сплавов. Прежде чем детально обсуждать термохимические данные, целесообразно заметить, что имеется  [c.58]

Для полупроводников основным фактором является деформация энергетических зон и появление поверхностных состояний, поверхностных экситонов и др. В металлах, помимо этих факторов, важную роль играет отражение электронов проводимости от поверхности и изменения их скоростей в поверхностном слое.  [c.192]

Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]


Необходимо сразу отметить, что процессы, обусловливающие электропроводность, очень сложны. Хотя качественная сторона этих процессов вполне ясна и теория позволяет предсказать общий вид температурной зависимости сопротивления металлов,, сплавов и полупроводников, однако количественные оценки недостаточно точны для расчета характеристик термометров сопротивления. Основная трудность вычислений связана с необходимостью точного теоретического учета относительного вклада различных конкурирующих процессов.  [c.187]

В зависимости от того, чем в основном обусловлена проводимость, электронами или дырками, проводимость полупроводника относят к п- или р-типу.  [c.198]

Причина изменения полярности, по-видимому, заключается в образовании непроводящ,их пористых осадков гидроксида цинка или основных солей цинка в условиях, когда цинк является анодом по отношению к железу, и в образовании оксида цинка, когда цинк является катодом [15]. Последнее соединение является полупроводником с электронной проводимостью. Следовательно, в аэрированной воде пленка ZnO может работать как кислородный элект-> род, чей потенциал, как и в случае прокатной окалины на стали, положителен по отношению к цинку и железу. Соответственно,  [c.237]

Для изготовления транзистора из монокристалла германия с электронной проводимостью в него с двух противоположных сторон вводится примесь атомов индия. Две области монокристалла германия с примесью индия становятся полупроводниками с дырочной проводимостью, а на границах соприкосновения их с основным кристаллом возникают  [c.159]

Кинга написана на основе курса лекций, читавшихся автором в течение многих лет на физическом факультете МГУ. Книга хорошо известна в нашей стране и широко используется а качестве учебного пособия по общему курсу физики о университетах и физико-технических институтах, В новом издании основное содержание книги осталось без существенных изменений. Переработке подверглись главным образом главы, посвященные электронным явлениям в металлах и полупроводниках, а также явлениям в контактах дано понятие о квантовом описании электронных процессов в твердых телах кроме того, внесены более мелкие изменения в других частях книги.  [c.928]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]

В последние годы исключительно интенсивно развивается физика некристаллических веществ, к которым относятся жидкие металлы и полупроводники, стекло, аморфные металлические сплавы и т. д. Основной отличительной чертой кристалла является то, что атомы или молекулы, составляющие его, образуют упорядоченную структуру, обладающую периодичностью с дальним порядком. Из-за математических упрощений, связанных с этой периодичностью, физические явления в кристаллических твердых телах были хорошо поняты сразу после создания квантовой механики.  [c.353]

Рассмотрим основные свойства аморфных полупроводников.  [c.360]

В отличие от кристаллического полупроводника, где при комнатной температуре электроны с мелких донорных уровней переходят в зону проводимости, здесь они перейдут, в основном, на локализованные состояния вблизи уровня Ферми. При высокой плотности состояний это приводит к незначительному смещению уровня Ферми из положения Ер в положение и электрические свойства полупроводника практически не изменятся. Новое положение уровня Ферми может быть найдено из условия  [c.365]

Электрофотография (ксерография) — процесс, в котором используются фотопроводящие свойства селенового стекла. Остававшийся долгое время без объяснения этот процесс сейчас в основном понят. Для получения копии сначала заряжают верхнюю поверхность пленки из селенового стекла, распыляя по, ней положительные ионы. При этом на металлической подложке, на которую нанесено стекло, образуется отрицательный заряд изображения. Затем пленку освещают отраженным от копируемого оригинала светом. Там, где на оригинале была буква, свет поглощается, где буквы не было, свет отражается от листа и после попадания на стекло его энергия поглощается электронно-дырочными парами вблизи верхней поверхности. Сильное электрическое поле внутри полупроводника разделяет пары. Электроны поднимаются наверх и нейтрализуют положительные ионы на верхней поверхности дырки движутся к металлической подложке и нейтрализуют на ней отрицательный заряд. В результате этого поверхность селенового стекла становится электронейтральной там, где не было букв на оригинале, и остается положительно заряженной там, где буквы были. Затем к положительно заряженным областям притягиваются отрицательно заряженные черные частицы красителя. Краситель переносится на лист положительно заряженной бумаги и закрепляется нагреванием. На этом процесс копирования заканчивается.  [c.369]


В настоящее время существует много различных материалов, которые используются в качестве активных сред в лазерной технике диэлектрические кристаллы, активированные стекла, газы, растворы и пары красителей, полупроводники и др. В зависимости от вида активной среды различают следующие основные типы лазеров твердотельные, газовые, жидкостные и полупроводниковые. Коротко охарактеризуем их.  [c.285]

Основное характеристическое соотношение для фотопроводимости. Пусть Ли и Д/7 — концентрации неравновесных электронов проводимости и дырок, обусловленные поглощением света в полупроводнике. Выражение для проводимости полупроводника запишем теперь в следующем виде  [c.177]

Основной параметр, определяющий фотопроводимость полупроводника,— время жизни носителей. Для управления этим параметром применяют различные типы примесей,  [c.178]

Предположим теперь, что на р-полупроводник с наружной стороны падает поток фотонов (рис. 7.13, б). Энергия фотонов превышает ширину запреш,енной зоны. Фотоны генерируют электроны проводимости и дырки, которые, возникнув, начинают диффундировать через р-область по направлению к р-п-переходу. Электроны проводимости являются для р-области неосновными носителями, поэтому внутреннее поле в р-п-переходе втягивает их в п-область. Что же касается дырок, то они являются для р-области основными носителями, поэтому поле в р-п-переходе задержит их и возвратит обратно в р-область. В результате происхо-  [c.180]

Полупроводник — вещество, основным свойством которого является сильная зависимость удельной проводимости (см. с. 123) от воздействия внешних факторов.  [c.117]

Первая особенность состоит в том, что уровень Ферми попадает в дозволенную область энергий в сильно легированном некомпенсированном полупроводнике имеет место вырождение газа основных носителей заряда (в конкретном случае — электронов). Поэтому такие материалы часто называют вырожденными.  [c.121]

Если атомы примеси имеют меньший по сравнению с основными заряд ядра, то образуется полупроводник р-типа в нем расщепляется валентная зона с образованием над нею примесных уровней.  [c.602]

В таблицы в основном включены данные о полупроводниках с Eg<3 эВ. Тройные и более сложные полупроводниковые соединения не описаны . Не приведены также сведения о параметрах различных полупроводниковых приборов.  [c.455]

Полупроводники представляют собой обширную группу веществ, занимающих по величине удельной объемной проводимости промежуточное положение между диэлектриками и проводниками. Возможность получения различного характера электроироводности — электронной и дырочной — и управления ею составляет одну из важных отличительных особениосте полупроводников. В периодической системе имеется 12 элементов, обладающих полупроводниковыми свойствами это так называемые элементарные или простые полупроводники (основной состав полупроводника образован атомами одного химического элемента). Такими элементами являются в III группе — бор в IV группе — углерод, кремний, германий, олово (серое) в V группе — фосфор, мышьяк, сурьма в VI группе —сера, селен, теллур в VII группе — йод. Достаточно отчетливо можно представить общие закономерности и особегнюсти элементарных полупроводников, рассматривая такие полупроводники, как германий и кремний ( 13.5 и 13.6).  [c.171]

Теплопроводность полупроводников. Полупроводниковые материалы замечательны тем, что могут обладать высокой решеточной теплопроводностью, если их кристаллы не слишком дефектны и состоят из легких атомов, как это имеет место, например, у кремния и, германия (см. табл. 4.2). Их электронную теплопроводность можно изменять в широких пределах, изменяя концентрацию электронного газа путем легирования. Тем не менее для большинства полупроводников основной вклад в теплопроводность вносит решетка. Так, для германия, обладающего удельным сопротивлением 1 Ом см при комнатной температуре, отношение KaJKyieui 10 - Даже для такого полупроводника, как теллурид висмута (В)2Тез), обладающего очень низким удельным сопротивлением Ю" Ом см, отношение Достигает величины всего лишь порядка 0,2.  [c.142]

НИЮ в области барьера дрейфовых потоков над диффузионными (см. Контактные явления в полупроводниках). Основные захономерности Э. н. з. определяются полем заряда, образующегося в объёме полупроводника. Поскольку знак этого заряда противоположен знаку носителей, вытягиваемых в контакт, создаваемое им поле препятствует Э. н. 3. Различия в механизме образования объёмного заряда приводят к необходимости подразделять Э. н. з. (так же, как инжекцию) на монополярную и биполярную (двойную), стационарную и нестационарную. Б. И. Фукс.  [c.506]

Выше было рассмотрено использование в термометрии по сопротивлению электронных полупроводников и других материалов, свойства которых сходны со свойствами полупроводников. Основное внимание уделялось изучению их поведения при температурах ниже 20° К, так как в этой области температур ощущается нужда в термометрах, которые могли бы служить таким же практическим стандартом, каким платиновый термометр является при температурах выше 20° К. Угольные термометры типа радиосопротивлений фирмы Аллен — Брэдли обладают большинством необходимых для этого свойств. Однако для некоторых лабораторных исследований необходимы термометры с другими характеристиками. Можно надеяться, что необходимость в них будет стимулировать дальнейшие поиски и исследования чувствительных к температуре сопротивлений в качестве термометров для всех температурных областей.  [c.182]

М0ЖНЫХ в этой области приближений. Последние диктуются в первую очередь типом кристалла и природой рассматриваемых возбуждений. Так, в ионных кристаллах в инфракрасной области особенно существенными являются оптические ветви колебаний решетки [24]. Однако в тех же ионных кристаллах в области более высоких частот, а особенно в молекулярных кристаллах и некоторых полупроводниках, основную роль играют возбуждения электронного типа [25, 25а]. Наглядно эти возбуждения могут быть представлены как переходящее от узла к узлу возбужденное состояние молекулы (экситон Френкеля) или движущаяся связанная пара электрон-дырка (экситон Ванье — Мотта). Вместе с тем, в силу трансляционной симметрии кристалла, собственные функции, отвечающие возбуждениям, охватывают весь кристалл и имеют характер модулированных плоских волн с волновым вектором к ). Если при этом ограничиться для простоты случаем идеальной неподвижной решетки, то волновая функция возбуждения может быть записана в виде (см., например, [25])  [c.22]


Задача 12. Для модели полупроводника, основное состояние (в = 0) которого представляет полностью заполненную валентную зону и пустую зону проводимости (см. рис. 90), показать, что значение химического потенциала fl лежит в интервале О /г Д (т. е. в запрещенной зоне), определить среднее число возбужденных состояний типа частица—дырка при температуре в < Д, внутреннюю энергию и теплоемкость системы, полагая для простоты, что эффективные массы электронного то и дырочного т возбуждений )авны друг другу.  [c.221]

Двойники и дефекты упаковки в монокристаллах также являются довольно распространенными дефектами структуры, возникающими при росте полупроводников. Основными причинами образования двойников в монокристаллах при их выращивании из жидкой фазы являются больщие термические и механические напряжения на периферии фронта кристаллизации, а также включения второй фазы вблизи фронта кристаллизации. Двойники, причины появления которых перечислены выще, получили название двойников прорастания. Приведем примеры ситуаций, в которых появляются двойники прорастания. Значительные напряжения в выращиваемом кристалле, возникающие при кристаллизации полупроводников в тиглях методами Бриджмена и горизонтальной зонной плавки, особенно часто приводят к появлению двойников прорастания. Эти напряжения возникают в результате увеличения объема монокристалла при кристаллизации. Резкие изменения диаметра свободно растущего в методе Чохральского монокристалла также могут вызвать напряжения и появление двойников прорастания на конусной части кристалла. Попадание посторонних включений на поверхность растущего монокристалла в области фронта кристаллизации способствует появлению двойников.  [c.244]

В примесном полупроводнике носители заряда, обусловленные преобладающей примесью, называются основными носителями заряда. В электронном полупроводнике основными носителями заряда будут электроны, в дырочном — дырки. Дырки, присутствующие в электронном нолуироводпике, но не играющие основной роли в проводимости, называются неосновными носителями заряда. Соответственно в дырочном полупроводнике неосновными носителями заряда будут электроны. При любой температуре виутри электронного полупроводникового кристалла имеется как прямой переход электронов с донорных атомов и из ковалентных связей в свободное состояние, так и обратный. В результате устанавливается некоторое динамическое равновесие, обусловленное тепловым движением. Концентрации основных и неосновных носителей заряда при условии  [c.21]

Нитриды — соединения металлов и других элементов непосредственно с азотом. Азот, составляющий основную часть воздуха, всегда в какой-то степени участвует в процессах сварки металлов плавлением, и так как его присутствие легко определяется методами аналитической химии и спектрального анализа, то по содержанию азота в наплавленном металле судим о степени защиты зоны сварки от окружающей воздушной атмосферы. При высоких температурах азот реагирует со многими элементами. Так, s-металлы дают нитриды, которые можно рассматривать как производные аммиака NasN MgaN2 и т.д., р-эле-менты образуют промышленно важные нитриды. Например, боразон, или эльбор, BN (АН°=—252,6 кДж/моль s° = = 14,8 Дж/ моль- К), плотность 2,34 г/см 7 пл=3273 К) представляет собой очень твердый материал, почти не уступающий по твердости алмазу нитрид кремния Si3N4 [АН — = —750 кДж/моль = 95,4 Дж/(моль-К), Г л = 2273 К (возгонка)] — полупроводник (Д = 3,9В) нитрид алюминия AIN разлагается водой.  [c.343]

В полупроводнике, содержа- рочного (б) полупроводников щем акцепторную примесь, электроны легко переходят из валентной зоны на акцепторные уровни. При этом в валентной зоне образуются свободные дырки. Количество свободных дырок здесь значительно превышает количество свободных электронов, образовавшихся за счет переходов из валентной зоны в зону проводимости. Поэтому дырки являются основными носителями, а электроны — неосновными. Проводимость полупроводника, содержащего акцепторную примесь, имеет дырочный характер, а сам полупроводник в соответствии с этим назьь вается дырочным (или акцепторным).  [c.251]

Существование металлов, полупроводников и диэлектриков, как известно, объясняется зонной теорией твердых тел, полностью основанной на существовании дальнего порядка. Открытие того, что аморфные вещества могут обладать теми же электрическими свойствами, что и кристаллические, привело к переоценке роли периодичности. В 1960 г. А. Ф. Иоффе и А. Р. Регель высказали предположение, что электрические свойства аморфных полупроводников определяются не дальним, а ближним порядком. На основе этой идеи была развита теория неупорядоченных материалов, которая позволила понять многие свойства некристаллических веществ. Большой вклад в развитие физики твердых тел внесли советские ученые А. Ф. Иоффе, А. Р. Регель, Б. Т. Коломиец, А. И. Губанов, В. Л. Бонч-Бруевич и др. Губановым впервые дано теоретическое обоснование применимости основных положений зонной теории к неупорядоченным веществам.  [c.353]

Фотолюминесценция — люминесценция, возникающая при возбуждении светом видимого и ультрафиолетового диапазонов частот фотовоэбуждение). На практике фотовозбуждение используется для получения люминесценции жидких растворов, стекол, твердых диэлектриков и полупроводников. При этом роль центров люминесценции играют специально вводимые в основное вещество ионы или молекулы. Так, например, в твердые диэлектрики и стекла вводят в виде небольших примесей ионы неодима (Nd +) и других редкоземельных элементов. В жидкие растворители вводят, в частности, молекулы органических красителей.  [c.184]

Широкое практическое применение находят неорганические кристаллические люминофоры, называемые кристал-лофосфбрами или, проще, фосфорами (не надо путать с химическим элементом фосфором ). Они используются, например, в светящихся циферблатах часов. Кристаллофос-форы синтезируют, прокаливая специально приготовленные смеси, включающие в себя основное вещество и примеси активаторов, играющих роль центров люминесценции. Все кристаллофосфоры относятся к диэлектрикам или полупроводникам.  [c.184]

Однако помимо мелких уровней, определяемых соотношением (2.69), в полупроводниках имеются локальные уровни, лежащие на значительно больших расстояниях от энергетических зон. Эти глубокие уровни нельзя объяснить водородоподобной моделью и приходится считать, что электроны в таких атомах примеси слабо В(Эаимодействуют с атомами основного вещества, а орбита электрона примесного атома имеет малый радиус. Глубокие примесные уровни играют больщую роль в протекании неравновесных процессов.  [c.93]

Помещаемый здесь справочный материал относится в основном к магнитным свойствам диэлектриков, обладающих антиферромагнитным упорядочением. Кроме того, приведены свойства некоторых антиферромагнит-ных полупроводников, металлов и металлических спла-вов .  [c.652]


Смотреть страницы где упоминается термин Полупроводники основные : [c.177]    [c.251]    [c.296]    [c.156]    [c.947]   
Физика твердого тела Т.2 (0) -- [ c.219 ]



ПОИСК



Основные и неосновные носители заряда в полупроводнике

Основные сведения о полупроводниках

Основные свойства и группы полупроводников

Полупроводники

Полупроводники Основные свойства



© 2025 Mash-xxl.info Реклама на сайте