Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллическая решетка кремния

Рис. 5.10. Кристаллическая решетка кремния при абсолютном нуле температуры (а), с разрывом одной ковалентной связи с примесью, обеспечивающей проводимость п-типа (б), и с примесью, обеспечивающей проводимость р-типа (г) Рис. 5.10. Кристаллическая решетка кремния при <a href="/info/3790">абсолютном нуле температуры</a> (а), с разрывом одной <a href="/info/16469">ковалентной связи</a> с примесью, обеспечивающей проводимость п-типа (б), и с примесью, обеспечивающей проводимость р-типа (г)

Первый случай можно рассмотреть на кристалле германия или кремния, в которых атомы удерживаются за счет ковалентных, или парно-электронных связей с четырьмя другими подобными себе атомами (структура алмаза — см. рис. 13). На рис. 158, а показана кристаллическая решетка кремния, не содержащая инородных примесей. На рис. 158, б изображена решетка кремния с примесью элемента третьей группы — бора, имеющего на внешней орбите три  [c.285]

На рис. 158, в приведена кристаллическая решетка кремния с примесью мышьяка — элемента пятой группы, у которого на внешней  [c.286]

Рис. 158. Кристаллическая решетка кремния без примесей, с акцепторной примесью бора и донорной примесью мышьяка. Рис. 158. Кристаллическая решетка кремния без примесей, с акцепторной примесью бора и донорной примесью мышьяка.
Фиг. 153. Кристаллическая решетка кремния без примесей (а), с акцепторной примесью бора (б) и донорной примесью мышьяка (в) Фиг. 153. Кристаллическая решетка кремния без примесей (а), с акцепторной примесью бора (б) и донорной примесью мышьяка (в)
На фиг. 153, в приведена кристаллическая решетка кремния с примесью мышьяка, элемента пятой группы, у которого на внешней орбите расположено 5 электронов. Попав в решетку кремния и связав четыре из своих электронов, такая примесь дает избыточный, свободный электрон , который под воздействием электрического поля станет перемещаться слева направо иными словами, образуется полупроводник типа п .  [c.305]

Тем не менее в работах [14, 15] продемонстрирована возможность применения процесса ГТГ для регистрации разупорядочения кристаллической решетки кремния при ионной имплантации по уменьшению относительной величины анизотропной части Заметим, что при использовании  [c.236]

Рассмотрим вещества, объединенные выражением ХУ. Окислы двухвалентных металлов, карбиды переходных металлов и силициды а-фазы имеют кубическую решетку такую же кристаллическую решетку имеет большинство нитридов. Что касается боридов, то у многих из них решетка кубическая или орторомбическая [39]. Карбид кремния обладает в основе плотной шаровой упаковкой. В зависимости от того, в одну или в раз-  [c.74]


Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

В качестве примера на рис. 6.5. показан спектр частот для кристалла кремния ([а=2) острый максимум при й = = l,7 10 с 1 связан с оптическими колебаниями. В рассматриваемом случае -lOi с , что соответствует энергии 0,01 эВ. Эта величина может быть взята в качестве оценки ширины энергетической полосы, отвечающей тепловым колебаниям кристаллической решетки.  [c.135]

Важнейший элемент неорганической химии кремний в виде простого вещества имеет кристаллическую решетку алмаза (рис. 8). Атомы кремния располагаются по вершинам и в центрах каждой грани элементарной кубической ячейки. Тремя перпендикулярными плоскостями, проходящими через центр ячейки, можно мысленно разделить элементарную кубическую ячейку на 8 малых кубов (октантов), один из которых на рис. 8 показан пунктиром. По каждому координатному направлению заселенные октанты, в центре которых находятся атомы кремния, чередуются с пустыми. Следовательно, из восьми октантов заселенными оказываются только четыре. При таком расположении каждый атом кремния окружен четырьмя другими, которые, в свою очередь, окружены четырьмя следующими атомами, находящимися на том  [c.15]

Рассмотрим примесные полупроводники. Содержащиеся в них примесные ато.мы могут оказывать сушественное влияние на электропроводность полупроводника. На рис. 3.5, а, в, д схематически представлены процессы образования свободных носителей заряда, способных участвовать в электропроводности, в собственном и примесном кремнии, эти же процессы показаны и на энергетических диаграммах (рис. 3.5, б, г, е). Для кремния характерны примеси замещения, V. е. атомы примеси заменяют атомы кремния в узлах кристаллической решетки.  [c.50]

Хорошая текстура повышает магнитную проницаемость, снижает потери в направлении ориентации кристаллических осей. Наиболее вредной примесью является углерод, резко увеличивающий коэрцитивную силу и потери на гистерезис. Кремний оказывает вредное влияние только на очень чистое железо при наличии в железе кислорода примесь кремния полезна, так как кремний, действуя как раскислитель, способствует росту зерен. С увеличением размеров зерен улучшаются магнитомягкие свойства железа. Искажение- кристаллической решетки за счет пластической деформации, вызванной механическими - воздействиями, — наклеп ухудшает магнитомягкие свойства. Снятие наклепа (восстановление исходных свойств) осуществляется при отжиге.  [c.302]

Эпитаксиальное выращивание представляет собой процесс осажде-ни я атомов кремния из газовой фазы и получение монокристалличе-ского слоя (эпитаксиального) кремния. Оси кристаллической решетки  [c.185]

Как указывалось выше, число ионизованных электронов при облучении полупроводников зависит от общего количества поглощенной энергии. Энергия, необходимая для образования электронно-дырочной пары, равна 3 эв для германия и 3,5 эв для кремния. Возможна непосредственная рекомбинация избыточных электронов и дырок с испусканием фотона. Однако рекомбинация большей части неравновесных носителей происходит на дефектах кристаллической решетки.  [c.311]

Разделение электронов и дырок обеспечивается р-п-переходом. Рассмотрим его на примере кремния. Его четырехвалентные атомы связаны друг с другом в кристаллической решетке ковалентными связями, как показано на рис. 5.10, а -f4 означает валентность атома кремния). При нагреве или поглощении фотона электроны могут высвобождаться, образуя при этом дырки. На рис. 5.10 показан кристалл кремния с разрывом одной ковалентной связи за счет подвода теплоты или энергии из-  [c.97]

Видимый свет поглощается в кремнии на глубину около 0,1 мкм. Механизм поглощения состоит в резонансном взаимодействии с электронами. Квант оптической энергии поглощается электроном, который переходит на более высокий энергетический уровень. Возбужденные электроны сталкиваются с фононами решетки и другими электронами и обмениваются энергией. Посредством этих процессов поглощенная энергии передается кристаллической решетке в течение нескольких пикосекунд с последующим превращением в тепловую. Поглощенный лазерный луч разогревает часть образца, появляются тепловое расширение и механическое напряжение. При этом утечка тепла от освещенной зоны к прилегающим частям должна быть максимально уменьшена, что может быть достигнуто использованием лазеров, работающих в импульсном режиме. Если длительность импульса равна 1 мс, то только в течение этого времени имеет место утечка тепла. Эффект воздействия лазерного импульса зависит от его энергии.  [c.154]


Относительно высокая жаростойкость кремнистого чугуна объясняется влиянием кремния на формирование структуры металлической основы чугуна и образование защитной окисной пленки на поверхности изделий. Структура кремнистого чугуна с пластинчатым графитом не претерпевает изменений приблизительно до 900° С [27, 28]. У чугуна с более высоким содержанием кремния стабильность структуры сохраняется вплоть до температуры плавления. Кремний, содержащийся в чугуне в количестве 5—6%, способствует образованию окислов типа шпинели с плотно-упакованной кристаллической решеткой, предохраняющей металл от диффузионного окисления, о чем свидетельствуют данные рентгеноструктурного анализа окалины кремнистого чугуна, приведенные в табл. 49.  [c.208]

Наиболее эффективное средство защиты стали от газовой коррозии — легирование. В качестве легирующих элементов, улучшающих жаростойкость, наиболее часто применяют хром, кремний и алюминий, окисляющиеся> легче железа. Совместно с окислами железа они образуют на поверхности стали пленку сложного состава, препятствующую интенсивному окислению. Защитное действие пленки поддерживается непрерывной диффузией легирующих элементов к поверхностному слою, где они взаимодействуют с кислородом. Диффузия легирующего элемента протекает тем быстрее, чем меньше размеры его атомов, так как атомы малых размеров легче перемещаются в кристаллической решетке основного металла. Этим отчасти объясняется хорошее защитное действие хрома, алюминия и кремния, атомы которых меньше атомов железа.  [c.46]

При трении кобальта по кобальту наиболее низкий коэффициент трения наблюдается для его низкотемпературной модификации, имеющей гексагональную кристаллическую решетку (рис. 1). Сплавы на основе кобальта с высоким содержанием молибдена, кремния и ванадия оказались более износостойкими, и после некоторого упрочнения рабочих поверхностей могут быть использованы при трении в вакууме.  [c.46]

Неметаллические бескислородные соединения. Карбид кремния Si (или карборунд) представляет собой соединения кремния с углеродом [21, 63, 67, J01 ]. Кроме модификации с гексагональной кристаллической решеткой ( - Si ) имеется модификация с кубической структурой типа алмаза (Р - Si ). Карбид кремния отличается высокой твердостью, теплопроводностью, огнеупорностью, специфическими электрическими и полупроводниковыми свойствами (табл. 9).  [c.142]

Сопоставление ПС а-8Ю2 с энергетическим распределением состояний а-кварца [146] свидетельствует, что переход диоксида кремния в стеклообразное состояние (отметим, что сам процесс плавления кристаллической решетки кварца получил недавно [141] подробное микроскопическое описание) не меняет принципиальных особенностей электронного спектра системы, см. рис. 7.2 и 7.13. Основное изменение спектра аморфной фазы (в сравнении с кристаллом) сводятся к размытию тонких особенностей ПС и разрушению многопиковой структуры ПС отдельных энергетических зон с определенным уширением последних. Так, ширина ЗЩ й-ЗЮг в сравнении с кварцем [55] уменьшается на -0,65 эВ [146] (экспериментальные оценки этой величины составляют -0,5 эВ [5]).  [c.169]

Кремний — Si. Тип кристаллической решетки — алмаз. Температура плавления 1417°С. Плотность твердого кремния — 2330 кг/м , жидкого при температуре плавления — 2530 кг/м . Ширина запрещенной зоны при 300 К — 1,10 эВ. Собственная концентрация носителей зарядов — 10 см . Подвижность носителей заряда в беспримесном полупроводнике при 300 К электронов — 1450 mV(B с), дырок — 480 mV(B с). Коэффициент термического расширения 6,0 10" К . Кремний химически устойчив при нагреве на воздухе до 900 С, в воде нерастворим.  [c.379]

Опыты по диффузии различных элементов в свинце показали, что коэффициент диффузии тем больше, чем больше физико-химические свойства диффундирующего элемента отличаются от свойств растворителя. Подобная картина получается при диффузии элементов второй, третьей и четвертой групп (олова, кремния, алюминия и цинка) в меди. Очевидно, искажения силового поля кристаллической решетки основы при внедрении чужеродных атомов уменьшают энергию активации и облегчают диффузию.  [c.108]

Атомы в кристаллической решетке кремния и ряда других полупроводников связаны друг с другом за счет обменных сил, возникающих в результате попарного объединения валентных электронов соседних атомов, при этом каждый из атомов остается электрически нейтральным. Такая связь называется ковалентной. Повышение температуры вызывает колебательное движение атомов кристаллической решетки. В результате ковалентные связи между атомами могут разрываться, что приводит к образованию пары носителей заряда свободного электрона и незаполненной связи - дырки - вблизи того атома, от которого оторвался электрон. Процесс образования электронно-дырочнь1х пар называется генерацией носителей заряда Если этот процесс происходит под воздейст-вие.м теплоты, то его называют термогенерацией.  [c.49]

Для измерения напряжений при различных температурах изготовлено нагревательное устройство, которое укрепляли на гониометре рентгеновского дифрактометра. Оно позволяло изменять температуру от 25 до 550 °С. Образец поджимали пружинами к нагреваемой части печи так, чтобы передача тепла к образцу происходила контактным способом. За температурой следили с помощью термопары, спай которой распо-лагали в непосредственной близости с образцом. Стандартный метод рентгеновского способа измерения напряжений, включающий угловые съемки образцов, так называемый з1п ф-метод [38], как показали опыты, оказался неинформативным, так как было определено, что частицы кремния находятся в условиях всестороннего сжатия и поэтому деформации кристаллической решетки кремния не зависили от угла съемки.  [c.34]


Первый случай разберем на примере кристалла кремния, в котором атомы удерживаются за счет ковалентных или парноэлектронных связей с четырьмя другими себе подобными атомами. На фиг. 153, а показана кристаллическая решетка кремния (элемента 4 группы таблицы Менделеева), не содержащая инородных примесей. На фиг. 153, б изображена решетка кремния с примесью элемента третьей группы — бора, имеющего на внешней орбите три валентных электрона. Такая примесь в решетке кремния представляет собой дырку в случае приложения электрического поля, как показано на фиг. 153, от левого атома кремния будет взят электрон этот атом захватит электрон от следующего атома, т. е. дырка начнет передвигаться справа налево. Такой полупроводник относится к типу р .  [c.304]

Диффузия является физическим процессом, обусловливающим миграцию атомов легирующих примесей в кристаллической решетке кремния. По существу, это один из важнейших технологических процессов при изготовлении любых видов электронных приборов и микросхем на кремнии. В данной главе основное внимание будет уделено рассмотрению современных представлений и идей, касающихся явлений диффузии в кремнии. Может показаться удивительным тот факт, что, несмотря на большую научную и технологическую значимость процесса Д1 ффузии в кремнии, а также известную завершенность микроэлектронной технологии, сегодня не существует ни общепринятой теории диффузии, на сколько-нибудь полных и бесспорных измерений коэффициентов диффузии основных легирующих примесей для ряда важных, с точки зрения технологии, условий проведения этого процесса.  [c.10]

В кристаллической решетке кремния в растворенном состоянии могут находиться многие химические элементы. Растворенный элемент называется замещающим, если его атомы занимают регулярные положения в узлах решетки растворителя, замещая его атомы. В случае, когда растворенные атомы занимают любые свободные межузельные положения в кристаллической решетке растворителя, о растворе говорят как о растворе внедрения. Многие химические элементы растворяются в кремнии как в маждо-узельном, так и в замещающем виде. Однако отношение растворимостей в этих состояниях изменяется от элемента к элементу на несколько порядков величины. Для элементов групп 1ПА и УА характерна способность об-разовьтать прочные ковалентные связи с собственными атомами кристаллической решетки кремния, в результате чего они занимают почти исключительно узлы решетки. Низкая энергия ионизации в таком состоянии делает эти элементы идеальными легирующими примесями, определяющими электрические свойства кристаллов кремния.  [c.10]

В неорганической химии молекулы являются типичной формой существования химического соединения в паро- и газообразном состоянии. Поэтому во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической рещетке. Такие кристаллические рещетки, в которых отсутствуют дискретные молекулы, называются координационными. К ним относятся ионные, металлические и атомные решетки. К ионным принадлежит решетка ЫаС1, к металлическим — решетка натрия, к атомным — решетки кремния и сульфида цинка. На,рис. 10 для сравнения приведена элементарная ячейка молекулярной решетки кристалла йода.  [c.16]

Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]

Физические свойства окисной пленки играют важную роль в процессах окисления металлов и сплавов. При этом большое значение имеет прочность сцепления окислов с металлом и сплошность покрытия поверхности образцов окисной пленкой. Алюминий, кремний и хром, входящие в состав чугуна, в зависимости от их содержания способствуют образованию окислов железа — типа шпинели или образуют чистые окислы на собственной основе, имеющие плотноупакованную кристаллическую решетку и обладающие высокой жаростойкостью. Первоначально образовавшиеся на поверхности изделий окислы алюминия, хрома и кремния, практически не претер певают изменений и надежно предохраняют металл от последующего окисления при высоких температурах.  [c.197]

Коррозионное разрушение металлов и сплавов происходит вследствие растворения твердого металла в расплавленном натрии, путем взаимодействия окислов металлов, располагающихся между зернами и натрием и его окислами [1,49], [1,57]. При взаимодействии, например, окиси натрия с окислами кремния могут образоваться легкоплавкие эвтектики, что ослабляет связь между зернами металла. При наличии в натрии кислорода и соответственно окислов натрия коррозия может протекать по электрохимическому механизму [1,49]. С этим обстоятельством возможно связана более высокая скорость растворения металлов в натрии при контактах разнородных материалов. Анодный процесс состоит в переходе ион-атомов из кристаллической решетки в расплав, катодная реакция — в восстановлении натрия из окисла до металла. О. А. Есин и В. А. Чечулин [I, 58] доказали, что эффективность катодного процесса восстановления натрия определяется скоростью диффузии ионов натрия в расплаве, содержащем его окислы. Локальные коррозионные элементы на поверхности металла могут образоваться вследствие структурной неоднородности, различных уровней механических напряжений, разрушения окисных пленок на отдельных участках поверхности и по ряду других причин. Устранение кислорода из расплава или связывание его в прочные соединения ингибиторами подавляет электрохимическую коррозию и, как известно, увеличивает стойкость конструкционных материалов в расплавленном натрии.  [c.50]


Сплав натрия с концентрацией от 40 до 90% калия при комнатной температуре или близкой к ней представляет собой жидкость, тогда как эвтектика (с концентрацией 77,2% К) затвердевает при 12,3° С. Натриево-калиевый сплав взаимодействует с теми же соединениями, что и натрий, с той лишь разницей, что он более активен. Поскольку этот сплав вследствие наличия калия более активен, целесообразно ознакомиться с его свойствами — способностью вступать во взаимодействие с некотовыми видами загрязнений теплоносителя, — в частности, кислород с калием образуют четырех-окись калия КОг, стабильную при комнатной температуре. Следует обратить внимание на то обстоятельство, что из сплава калия с натрием при температуре 200° С выделяется окись натрия. В отличие от натрия, калий при реакции с окисью углерода образует взрывоопасный карбонил, при реакции с водородом — нестабильный гидрид. При взаимодействии калия с графитом карбида калия не образуется — калий внедряется лишь в кристаллическую решетку графита. В отличие от натрия натриево-калиевые сплавы на кремний воздействуют, переводя его в раствор, в связи с чем ухудшаются ядерные свойства теплоносителя.  [c.315]

Рассмотренный способ описания кристаллической решетки окислов позволяет легко представить, что подавляющая часть катионов искажает анионную подрешетку, снижает ее устойчивость, повышает диффузионную проницаемость в отношении ионов кислорода и катионов. Из табл. 2, в которой приведены величины ионных радиусов, следует, что окись алюминия и двуокись кремния отличаются от других тугоплавких окислов неискаженностью анионной подрешетки. Эта кристаллографическая особенность играет немаловажную роль, так как все другие окислы, даже с более высокой термодинамической стабильностью (например, СаО, LajOs, ZrOj) имеют низкие защитные свойства. В то же время  [c.13]

Магнитно-мягкими являются ферромагнитные материалы (чистое железо и его сплавы с кремнием, никелем, кобальтом или алюминием, кремнием и алюминием, хромом и алюминием), отличительными чертами которых являются высокая магнитная проницаемость, низкая коэрцитивная сила (Н от десятых долей до 100- 150 А/м), малые потери на вихревые токи при перемагничивании, узкая и высокая петля гистерезиса, сравнительно большое электрическое сопротивление. Такие материалы быстро намагничиваются в магнитном поле, но так же быстро теряют свои магнитные свойства при его снятии. Свойства магнитно-мягких материалов сильно зависят от наличия дефектов, создаваемых загрязнениями, внутренними напряжениями и искажениями кристаллической решетки используемых металлов и сплавов. Примеси серы, фосфора, кремния и марганца, от которых не удается освободить литое железо даже при его вакуумной переплавке, существенно увеличивают потери на гистерезис. Использование высокочистых карбонильных или электролитических порошков железа и особенно его сплавов с никелем или кобальтом позволяет получать магнитные материалы, более точные по составу и с лучшими свойствами. Весьма эффективно производство спеченных магнитов из трудноде-формируемых сплавов например, при прокатке порошков в ленту толщиной до 30 мкм обеспечивается выход годного до 95 %, тогда как в случае получения такой же ленты из литого металла - 40 %.  [c.207]

Большинство легирующих элементов, подобно а- и -железу, имеет атомно-кристаллические решетки объемноцентрированного или гранецентрированного куба. Титан и цирконий имеют гексагональную решетку, а кремний и углерод — решетку типа алмаза. Сходство кристаллических решеток способствует образованию ле-гируюш,ими элементами твердых растворов с железом. Элементы, имеющие объемноцентрированную кубическую решетку, растворяются преимущественно в а-железе, а имеющие гранецентрирован-ную кубическую — в у-железе.  [c.304]


Смотреть страницы где упоминается термин Кристаллическая решетка кремния : [c.15]    [c.249]    [c.51]    [c.10]    [c.75]    [c.348]    [c.194]    [c.74]    [c.186]    [c.98]    [c.237]    [c.446]    [c.157]   
Смотреть главы в:

Кремниевые вентили  -> Кристаллическая решетка кремния



ПОИСК



Кремний

Кремний кристаллический

Кристаллическая решетка

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте