Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники примесные

Электрическая проводимость полупроводников весьма чувствительна даже к небольшому количеству примесей. Например, введение в кремний всего 0,001% В увеличивает его проводимость при 20°С примерно в 1000 раз в ряде случаев примеси увеличивают проводимость в миллионы раз. Проводимость полупроводников, обусловленная наличием примесей, называется примесной проводимостью, а полупроводники — примесными полупроводниками.  [c.281]

Введение в полупроводник примесных атомов приводит к нарушению в нем стехиометрического состава и периодичности кристаллической решетки. Примеси вносят в структуру полупроводника дополнительные квантовые уровни, отличающиеся от зонной структуры уровней основного кристалла. В полупроводниках примеси в зависимости от их природы и природы полупроводников могут образовывать п- или р-проводимости. Примеси, образующие и-проводимость, должны иметь большую валентность, чем валентность, основного полупроводника примеси, создающие р-проводимость, должны иметь валентность меньшую по сравнению с валентностью основного полупроводника. Например, для четырехвалентного германия пятивалентные примеси As, Р, Sb и др. создают электронную проводимость, поскольку четыре атома примеси, занимая в кристаллической решетке германия определенные узлы, образуют ковалентные связи с соседними атомами германия, а избыточный (пятый) электрон внешней орбиты мышьяка остается свободным. Такие свободные электроны создают электронную проводимость. Примеси, освобождающие электроны, называются донорами, а соответствующие им энергетические уровни — донорными  [c.282]


Глубокие примесные уровни. Некоторые примеси создают в полупроводниках примесные уровни, расположенные далеко от границ энергетических зон. Такие уровни называются глубокими. В кремнии и германии подобные уровни создают атомы золота, меди, марганца, железа и др. Эти уровни играют большую роль в протекании процессов рекомбинации неравновесных носителей заряда.  [c.159]

ПРОБОЙ магнитный — туннельный переход электрона, движущегося в металле при наличии магнитного поля, с одной орбиты на другую световой — переход вещества в состояние плазмы в результате сильной ионизации под действием мощного светового излучения электрический — общее название процессов, приводящих к резкому возрастанию электрического тока в среде, исходно не электропроводной) ПРОВОДИМОСТЬ ионная обусловлена движением свободных ионов комплексная определяется отношением действующего значения силы переменного тока в электрической цепи к действующему значению напряжения на ее зажимах магнитная измеряется отношением магнитного потока в каком-либо участке магнитной цепи к магнитодвижущей силе, действующей на этом участке полупроводника [примесная дырочная (/)-типа) обеспечивается движением дырок в направлении, противоположном движению электронов, перебрасываемых из валентной зоны в зону проводимости полупроводника электронная (я-типа) осуществляется электронами, перебрасываемыми с донорных уровней в зону  [c.266]

При слабом легировании (см. Легирование полупроводников) примесные атомы можно считать изолированными друг от друга. Волновые ф-ции электронов и силовые поля V соседних примесных атомов (кулоновские для заряж. примесей — ионов, упругие — для нейтральных атомов) не перекрываются (рис. 1, а).  [c.501]

Кривая 2 не показывает уменьшения проводимости высоколегированного полупроводника в интервале температур Т —Т . Это объясняется большим количеством поступающих в полупроводник примесных  [c.92]

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]


Транзистор сплавной — транзистор, в котором р—п переходы создаются путем сплавления примесных веществ с материалом исходной пластины полупроводника по принципу действия относится к диффузионным транзисторам граничная частота около 1 МГц [3,4].  [c.159]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

ПРОВОДИМОСТЬ ПРИМЕСНЫХ ПОЛУПРОВОДНИКОВ  [c.250]

Подвижность. В примесных полупроводниках носители заряда рассеиваются не только на фононах, но и на ионизованных атомах примесей. Например, в донорном полупроводнике свободные электроны, движущиеся вблизи иона примеси, заряженного положительно, изменяют свою траекторию так, как показано на рис. 7.21. Ясно, что чем выше скорость электрона, тем меньше его отклонение. Расчеты показывают, что подвижность, обусловленная рассеянием на ионизованной примеси, в случае невырожденного электронного газа  [c.253]

Рассматриваемый механизм рассеяния играет решающую роль в области низких температур, когда концентрация фононов мала. При высоких температурах доминирует рассеяние на фононах. На рис. 7.22 изображена зависимость подвижности от температуры для примесного невырожденного полупроводника, учитывающая  [c.253]

Рис. 7.22. Зависимость подвижности носителей заряда от температуры в примесном полупроводнике Рис. 7.22. Зависимость <a href="/info/16524">подвижности носителей заряда</a> от температуры в примесном полупроводнике
Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

В полупроводниках с высоким содержанием примеси в области низких температур проявляется специфический механизм проводимости, получивший название проводимости по примесной зоне. Предположим, что мы имеем донорный полупроводник с такой 254  [c.254]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]


Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Концентрация вводимой примеси при использовании таких традиционных термодинамических равновесных методов легирования, как, например, диффузия, не превышает некоторого предела, определяемого растворимостью. В то же время методом ионной имплантации можно ввести в полупроводник практически неограниченное количество примесных атомов. Таким образом, представляется возможным реализовать второй путь, т. е. получить примесную проводимость за счет, введения большой концентрации доноров (или акцепторов). Нам удалось без предварительного снижения плот-366  [c.366]

Аморфные диэлектрики в виде тонких пленок находят широкое применение в микроэлектронике. Во многих таких диэлектриках,, так же как и в аморфных полупроводниках, проводимость (весьма незначительная ) осуществляется путем перескоков из одного локализованного состояния в другое. Энергия активации этого процесса значительно ниже, чем энергия активации примесной проводимости в кристаллических диэлектриках.  [c.371]

В полупроводнике, у которого часть атомов исходного вещества замещена атомами других элементов (так называемый примесный полупроводник), кроме валентной зоны н зоны  [c.295]

Нас, естественно, будет интересовать только излучательная рекомбинация, которая в полупроводнике может происходить в результате межзонных переходов (стрелка 1 на рис. 35.22) и переходов из зоны на примесный уровень (стрелка 2) или через оба примесных уровня (стрелка 3).  [c.296]

Примесные полупроводники. Все, что говорилось выше о полупроводнике, относилось к чистым (беспримесным) полупроводникам. Примеси существенным образом воздействуют на картину электронных явлений в полупровод-  [c.145]

В отличие от металлов полупроводники имеют довольно сложный спектр оптического поглощения. В металле фотоны поглощаются электронами проводимости, совершающими переходы внутри энергетической зоны. Поэтому спектр поглощения металла непрерывен металлы поглощают излучение любой частоты. В полупроводниках фотоны могут поглощаться электронами валентной зоны (с последующим переходом в зону проводимости или на примесные уровни, находящиеся внутри запрещенной зоны), электронами на примесных уровнях (с переходом в зону проводимости или на другие примесные уровни), электронами проводимости (с последующими внутризонными переходами). Переходам электронов из валентной зоны в зону проводимости отвечает так называемая полоса собственного поглощения полупроводника она характеризуется наиболее высоким коэ-ф-фициентом поглощения. Частота о) р, соответствующая  [c.164]

В полупроводниках надо учитывать электрон-фононные и электрон-примесные столкновения, однако решающую роль играют столкновения фотоэлектрона с электронами валентной зоны. Специфика этих столкновений состоит в том, что валентному электрону должна передаваться сразу большая порция энергии — не менее ширины запрещенной зоны Д . При этом валентный электрон переходит в зону проводимости, рождается пара электрон проводимости и дырка. Рассматриваемый процесс называют ударной ионизацией-, энергия, передаваемая фотоэлектроном валентному электрону, называется энергией ударной ионизации. Одного акта ударной ионизации может оказаться достаточно для того, чтобы фотоэлектрон утратил возможность участвовать в фотоэмиссии.  [c.170]

Концентрации носителей Па и ра называют равновесными они устанавливаются при наличии термодинамического равновесия. В таком полупроводнике скорость тепловой генерации носителей заряда (генерации за счет теплового возбуждения) равна скорости их рекомбинации. Поэтому По и ро остаются постоянными при неизменной температуре. В собственном беспримесном полупроводнике Па=Ро, носители генерируются и рекомбинируют парами. В примесных полупроводниках с донорными примесями (п-полупроводниках) По>ро, а в полупроводниках с акцепторными примесями (р-полупроводниках) п <ро, здесь наряду с парными процессами происходят также одиночные процессы генерации и рекомбинации носителей. Определяемая выражением (7.3.1) проводимость Оо называется равновесной. Она обусловливает электрический ток, возникающий в неосвещенном полупроводнике при приложении к нему раз-и сти потенциалов (так называемый темповой ток).  [c.174]


Прямая рекомбинация электрона и дырки (рис. 7.11, б) менее вероятна по сравнению с рекомбинацией через примесный уровень, так как требует одновременного выполнения законов сохранения энергии и импульса рекомбинирующих частиц. Она проявляется лишь в очень чистых полупроводниках. В этом случае роль центров рекомбинации играют дырки и, следовательно, N =p, или (с учетом того, что в таких полупроводниках р=п) N =n. Рекомбинацию через примеси называют линейной а прямую рекомбинацию электрона и дырки — квадратичной  [c.175]

Квантовый выход внутреннего фотоэффекта. Предположим теперь, что полупроводник освещается монохроматическим светом, частота которого выше пороговой частоты для внутреннего фотоэффекта. Последняя определяется шириной запрещенной зоны в собственных полупроводниках и энергией ионизации донорных или акцепторных примесей в примесных полупроводниках. При поглощении фотонов электронами валентной зоны или примесных уровней будут происходить соответствующие квантовые переходы, приводящие к образованию дополнительных (неравновесных) носителей заряда, которые и обусловливают фотопроводимость.  [c.176]

Примесные состояния в полупроводниках  [c.91]

Имеются и другие области применения покрытий из перечисленных соединеций. Так, покрытие 51зМ4 играет особую роль в радиоэлектронике. Нанесенное на кремний из газовой фазы, оно является эффективной маской , поскольку задерживает диффузию в полупроводник примесных элементов лучше, чем пленка SiOz и, вместе с тем, выполняет роль лучшего диэлектрика.  [c.155]

Прежде чем перейти к подробному обсуждению зависимости удельного сопротивления металлов и полупроводников от температуры, коснемся особенностей поведения концентрированных сплавов. Введение значительного количества примесных атомов в твердый раствор приводит к искажению кристаллической решетки. Вследствие этого появляется дополнительный вклад в рассеяние. Его величина почти не зависит от температуры и может во много раз превышать долю электрон-фонон-ного рассеяния в чистом металле. Изменение остаточного удельного сопротивления неупорядоченного сплава Си—Аи в зави-  [c.191]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

Концентрация носителей. Предположим, что в полупроводнике имеются доноры с концентрацией N . Аналогично тому, как это было сделано для собственного полупроводника, можно записать условие электронейтральности и из него определить положение уровня Ферми в примесном полупроводнике. Так, в области низких термодинамических температур, когда процессами переброса элек-  [c.251]

Рис. 7.23. Зависимость удельной электропроводности невырожденного примесного полупроводника от температуры ( Vdi Рис. 7.23. Зависимость <a href="/info/88274">удельной электропроводности</a> невырожденного примесного полупроводника от температуры ( Vdi<A d2<iVd3)
Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне.  [c.365]

Халькогенидные стеклообразные полупроводники менее чувствительны к введению в них примесей. Это связано с особеннностя-ми химических связей в этих материалах. В то же время исследования последних лет дают основание говорить о возможности изменять спектр локальных состояний в запрещенной зоне этих полупроводников путем введения примесных атомов.  [c.367]

Если в чистом полупроводнике можно получить вырожденные электронный и дырочный газы лишь за счет значительного нарушения равновесия, то в примесных полупроводниках этого можно достичь и в равновесном состоянии. Равновесный выроледенный газ электронов проводимости может быть реализован в полупроводниках п-типа, а равновесный вырожденный газ дырок — в полупровод-  [c.145]

Примесной нолуироводник — полупроводник, электронные свойства которого существенно зависят от наличия примесных атомов.  [c.285]


Смотреть страницы где упоминается термин Полупроводники примесные : [c.573]    [c.198]    [c.251]    [c.254]    [c.255]    [c.365]    [c.295]    [c.145]    [c.214]    [c.91]    [c.92]   
Атомная физика (1989) -- [ c.342 ]

Теплопроводность твердых тел (1979) -- [ c.261 ]



ПОИСК



Боровский радиус для примесного уровня в полупроводнике

Положение уровня Ферми и концентрация свободных носителей заряда в собственных и примесных полупроводниках

Полуклассическая модель и примесные уровни в полупроводниках

Полупроводники

Примеры полупроводников Типичные примеры зонной структуры полупроводников Циклотронный резонанс Число носителей тока при термодинамическом равновесии Примесные уровни Заселенность примесных уровней при термодинамическом равновесии Равновесная концентрация носителей в примесном полупроводнике Проводимость за счет примесной зоны Теория явлений переноса в невырожденных полупроводниках Задачи Неоднородные полупроводники

Примеси в полупроводниках проводимость за счет примесной зоны

Примесная электропроводность полупроводников

Примесные состояния в полупроводниках

Примесные уровни в полупроводниках

Примесные центры в полупроводник

Проводимость в примесных зонах и в аморфных -полупроводниках

Проводимость полупроводника примесная

Собственная и примесная проводимости полупроводников

Собственная и примесная электропроводности полупроводников

Собственные и примесные полупроводники

Собственные и примесные полупроводники. Структура энергетических зон некоторых полупроводников

Теорема Блоха. Одномерная модель кристалла Кронига-Пенни. Проводники и диэлектрики. Естественные полупроводники. Примесные полупроводники Переход металл-металл

Уровень Ферми в примесном полупроводнике



© 2025 Mash-xxl.info Реклама на сайте