Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Акцепторные примеси

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]


И акцепторных примесей, но может быть представлено в виде  [c.199]

При равной концентрации донорных и акцепторных примесей в кристалле электропроводность обеспечивается (как и в чистом полупроводниковом материале) электронами и дырками вследствие разрыва валентных связей. Такие полупроводниковые материалы являются компенсированными.  [c.389]

Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а неосновными носите-  [c.156]

Здесь т р — эффективная масса дырки. Основной уровень акцепторной примеси (м=1), выраженный в эВ  [c.239]

Первый полупроводниковый лазер был выполнен на арсениде галлия (ОаАз) Ходом в 1962 г. Этот лазер обладал очень большой вероятностью излучательной рекомбинации. Лазер на арсениде галлия (Я = 0,84 мкм) относится к так называемым инжекционным лазерам на р —п-переходе. Обычно плавные р-н-переходы создают путем диффузии акцепторных примесей (цинк, кадмий и др.) в материал, легированный донорными примесями (теллур, селен и др.).  [c.297]

Как показал И. Е. Тамм, вблизи поверхности кристаллического образца возникают дополнительные энергетические уровни, обусловленные нарушением трансляционной симметрии кристаллической решетки вследствие ее обрыва поверхностные состояния или, иначе, уровни Там-ма). В полупроводнике эти состояния локализуются внутри запрещенной зоны. Они могут либо отдавать, либо принимать электроны, в результате чего на поверхности полупроводника образуется заряд того или иного знака, приводящий к изгибу энергетических зон в приповерхностном слое. Если полупроводник содержит донорные примеси (п-полупроводник), то в этом случае электроны будут переходить от примесей на поверхностные уровни в результате поверхность полупроводника зарядится отрицательно, а внутри полупроводника вблизи его поверхности возникнет положительный объемный заряд. Это приводит к изгибу зон, показанному на рис. 7.5, б. Изгиб происходит в пределах слоя толщиной обычно не более 10 м значительная же часть фотоэлектронов зарождается глубже — на расстояниях примерно до 10 —10 м от поверхности. Для таких электронов энергия электронного сродства х и соответственно порог фотоэффекта W увеличиваются на некоторую величину ЬЕ (см. рисунок). Более интересен в практическом отношении случай, когда полупроводник содержит акцепторные примеси (р-полупроводник). В нем электроны будут переходить с поверхностных уровней на примеси, поверхность будет заряжаться положительно, изгиб зон будет иметь вид, показанный на рис. 7.5, в. В данном случае благодаря изгибу зон происходит снижение порога внешнего фотоэффекта.  [c.166]


Концентрации носителей Па и ра называют равновесными они устанавливаются при наличии термодинамического равновесия. В таком полупроводнике скорость тепловой генерации носителей заряда (генерации за счет теплового возбуждения) равна скорости их рекомбинации. Поэтому По и ро остаются постоянными при неизменной температуре. В собственном беспримесном полупроводнике Па=Ро, носители генерируются и рекомбинируют парами. В примесных полупроводниках с донорными примесями (п-полупроводниках) По>ро, а в полупроводниках с акцепторными примесями (р-полупроводниках) п <ро, здесь наряду с парными процессами происходят также одиночные процессы генерации и рекомбинации носителей. Определяемая выражением (7.3.1) проводимость Оо называется равновесной. Она обусловливает электрический ток, возникающий в неосвещенном полупроводнике при приложении к нему раз-и сти потенциалов (так называемый темповой ток).  [c.174]

Квантовый выход внутреннего фотоэффекта. Предположим теперь, что полупроводник освещается монохроматическим светом, частота которого выше пороговой частоты для внутреннего фотоэффекта. Последняя определяется шириной запрещенной зоны в собственных полупроводниках и энергией ионизации донорных или акцепторных примесей в примесных полупроводниках. При поглощении фотонов электронами валентной зоны или примесных уровней будут происходить соответствующие квантовые переходы, приводящие к образованию дополнительных (неравновесных) носителей заряда, которые и обусловливают фотопроводимость.  [c.176]

Легирование электронного полупроводника акцепторной примесью или полупроводника р-типа донорной примесью приводит к перераспределению носителей заряда между донорным и акцепторным уровнями (компенсация примесей). Введением компенсирующих примесей можно уменьшить число свободных носителей заряда и приблизить сопротивление примесного полупроводника к его собственному сопротивлению. При компенсации примесей осуществляется переход электронов с донорных уровней на акцепторные, что при достаточно низких температурах приводит к некоторому уменьшению числа свободных носителей заряда.  [c.94]

Рис. 22.26. Зависимость удельного сопротивления Si при 300 К от концентрации донорных или акцепторных примесей [63] Рис. 22.26. Зависимость <a href="/info/43842">удельного сопротивления</a> Si при 300 К от концентрации донорных или акцепторных примесей [63]
Если в естественный полупроводник IV группы ввести в качестве примеси трехвалентные атомы из III группы элементов, то для осуществления ковалентной связи с четырехвалентным окружением этим атомам не хватает по одному электрону. Недостающие электроны они заимствуют у соседних атомов с затратой небольшой энергии порядка 10 эВ. В результате в валентной зоне возникает дырка, которая и обусловливает дырочную проводимость полупроводника. Поскольку энергия ионизации основных атомов для образования дырки мала ( 10 эВ), при комнатной температуре на каждый атом примеси приходится по одной дырке. Естественная дырочная и электронная проводимости при этом, как и в случае донор-ных примесей, малы. Поэтому доминирующей будет дырочная проводимость. Трехвалентные атомы примеси называются акцепторными. Акцепторные энергетические уровни лежат в запрещенной зоне весьма близко к ее верхнему краю. Для полупроводников IV группы периодической системы элементов наиболее важными акцепторными примесями являются элементы III группы-галлий, индий, таллий.  [c.351]

Во втором случае атомы вводимой примеси имеют меньшее число валентных электронов, чем атомы полупроводника. Поэтому атомам примеси не хватает валентных электронов для образования всех химических связей с окружающими их атомами полупроводника. Недостающие электроны могут быть захвачены атомами примеси у соседних атомов полупроводника, для чего необходима небольшая энергия Ел (рис. 3, в). При этом атомы примеси приобретают отрицательный заряд, а в валентной зоне на месте захваченного электрона образуется дырка. Введение в полупроводник таких примесей, называемых акцепторными, приводит к возрастанию концентрации дырок в валентной зоне при неизменной концентрации электронов в зоне проводимости. Полупроводники, легированные акцепторной примесью, называют дырочными, или полупроводниками р-типа электропроводности.  [c.8]


Маскирующие свойства пленок ЗЮа определяются коэффициентами диффузии основных донорных и акцепторных примесей в кремнии и его оксиде. Необходимо учитывать, что приводимые в литературе данные являются весьма приблизительными, так как коэффициенты диффузии существенно зависят как от условий получения пленки, так и от режима диффузии. Такие технологические операции, как загонка или осаждение легирующей примеси ионной имплантацией, химической диффузией и т. д., приводят к образованию источника легирующей примеси на поверхности оксидной пленки или вблизи нее. Чтобы легирующая примесь не диффундировала через оксидную пленку в маскированных областях и не достигала поверхности кремния, необходимо при последующей высокотемпературной обработке проводить диффузию этой примеси в оксид более  [c.44]

На рис. 3.16 показана работа выхода из собственного, электронного и дырочного полупроводников. Из рисунка видно, что работа выхода из полупроводника, легированного акцепторной примесью, больше, чем легированного донорной примесью.  [c.66]

Для селеновых вентилей применяется возможно более чистый селен, содержащий селена не менее 99,99%, так как от степени чистоты очень сильно зависят такие параметры, как плотность тока, обратное напряжение и др. Селен может быть кристаллическим и аморфным. В производстве полупроводниковых вентилей используется кристаллическая модификация с температурой плавления 220° С. Роль акцепторной примеси исполняют собственные атомы, не вошедшие в кристаллическую решетку. Запирающий слой в виде селенида кадмия образуется при формовании у подложки. Благодаря повышенным плотностям тока и более широкому диапазону рабочих температур селеновые вентили в отличие от меднозакисных могут быть использованы в разных промышленных устройствах. Однако по своим параметрам они не могут конкурировать  [c.278]

К числу существенных недостатков германиевых вентилей относится невысокая рабочая температура рабочий диапазон от — 50 до + Ж С при длительном воздействии температуры выше + 60° С в них проявляется тепловое старение, приводящее к ухудшению электрических параметров при низких температурах наблюдается значительное понижение обратного сопротивления. Кремниевые выпрямители могут работать при температуре до -1- 200° С. С точки зрения работы при высоких частотах кремниевые диоды имеют перед германиевыми преимущества, заключающиеся в большей чувствительности к слабым сигналам (пороговое напряжение у первых 0,01 В, у вторых от 0,1 до 0,25 В). Характеристики кремниевых вентилей, возможность получения больших выпрямленных мощностей в установках малых габаритов, особенно при использовании искусственного охлаждения, делают их исключительно прогрессивными. Поскольку кремний и германий являются элементами IV группы таблицы Менделеева, дырочная проводимость в них создается примесями элементов третьей группы, а электронная — элементов пятой группы. Для кремниевых полупроводников часто применяют алюминий, бор, для германиевых — индий в качестве акцепторной примеси мышьяк и сурьма (элементы V группы) — в качестве донорных примесей.  [c.284]

Полупроводник с акцепторными примесями носит название дырочного полупроводника или р-типа.  [c.270]

На энергетической диаграмме, представленной на рис. 8.2, в. акцепторная примесь имеет энергетический уровень Ец, расположенный на небольшом расстоянии над потолком валентной зоны. При ионизации акцепторной примеси происходит переход электрона из валентной зоны на уровень Eg, а в валентной зоне появляется дырка, которая и является свободным носителем заряда.  [c.270]

Создать р-п-переход механическим соединением двух полупроводников с различным типом электропроводности невозможно, электронно-дырочные переходы получают путем введения в полупроводник донорной и акцепторной примесей таким образом, чтобы одна часть полупроводника обладала электронной, а другая — дырочной электропроводностью.  [c.280]

Рассмотрим две отдельно взятые области электронного и дырочного полупроводников, показанные на рис. 8.9, а. Основные носители заряда в полупроводнике /г-типа — электроны (на рис. 8.9,а обозначены знаком минус), а в полупроводнике р-типа—дырки (на рис. 8.9, а обозначены знаком плюс). Ионизированные атомы донорной и акцепторной примеси обозначены соответственно знаками плюс и минус в кружочках. Неосновные носители в электронном и дырочном полупроводниках не обозначены, так как их концентрация очень мала в сравнении с концентрацией основных носителей.  [c.280]

Индий — металл с низкой температурой плавления, использующийся в качестве акцепторной примеси (см. стр. 235) и контактного материала в производстве транзисторов и полупроводниковых диодов.  [c.218]

Полупроводники, содержащие одновременно донорную и акцепторную примеси. Широкое практическое применение получили полупроводники, содержащие одновременно донорную (Nj ) и акцепторную (iVa) примеси. На рис. 6.6 показана зонная структура такого полупроводника. Так как электроны стремятся занять наинизшие энергетические состояния, то они переходят с донорных атомов на акцепторные. Если концентрация доноров Л д больше, чем акцепторов N , то все акцепторные уровни оказываются занятыми электронами с донорных центров и не могут принимать электроны из валентной зоны. В то же время оставшиеся Л д — Мц доноров могут отдать свои электроны в зону проводимости, так что в целом такой полупроводник будет иметь проводимость п-тина. Происходит как бы компенсация акцепторов донорами.  [c.168]


Рис. 6.6. Зонная структура (а) н изменение положения уровня Ферми с изменением концентрации примесей (б) в полупроводниках, содержащих одновременно донорную и акцепторную примеси Рис. 6.6. <a href="/info/166949">Зонная структура</a> (а) н изменение положения уровня Ферми с изменением концентрации примесей (б) в полупроводниках, содержащих одновременно донорную и акцепторную примеси
Аналогично ведет себя и полупроводник р-типа при увеличении в нем концентрации акцепторной примеси. Так как орбиты электронов примесных атомов увеличены в полупроводнике примерно в е раз (е — относительная диэлектрическая проницаемость полупроводника), то примесные атомы начинают заметно взаимодействовать друг с другом уже при концентрации примеси 10 м (10 —10 атомных процента).  [c.170]

Диффузионный метод (диффузионные р-н-переходы). Электронно-дырочный переход может быть получен также диффузией акцепторной примеси в донорный полупроводник или донорной примеси в акцепторный полупроводник. Диффузию можно вести из газообразной, жидкой или твердой фазы. Глубина проникновения примеси и залегания р—/г-перехода определяется температурой и вре-  [c.218]

Для -области основными носителями являются электроны, для р-области — дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей. При не слишком низких температурах эти примеси ионизированы практически полностью, вследствие чего концентрацию электронов в /г-области п о можно считать равной концентрации донорных атомов п о а концентрацию дырок в р-области р,,о — концентрации акцепторных атомов в р-области Рро Л а-  [c.219]

Исследование легированных кристаллов германия показало, что в низкотемпературной области легирование донорными примесями (Sb и As) приводит к упрочнению в противоположность легированию акцепторными примесями (In и Ga). Сравнение численных значений микротвердости германия легированного донорными и акцепторными примесями, свидетельствует о большей твердости германия, легированного сурьмой, чем легированного мышьяком, и германия, легированного индием, чем легированного галлием. Это можно объяснить влиянием размерного эффекта на прочностные свойства германия [66].  [c.253]

Акустический резонанс 224 Акцепторные примеси 155 Альфа-частицы 3 1 Альфа-распад ЗУ1 Аморфное тело 88 Ампар 17  [c.359]

Поскольку вакансия в узле, прежде занятом ионом хлора, представляет собой нескомпенсированный положительный заряд внутри кристалла, она притягивает к себе электрон точно так, как это осуществляется при введении в полупроводник акцепторной примеси. Особенностью является то, что захваченный вакансией электрон попадает не на большую во-дородоподобную орбиту, поакольку диэлектрическая постоянная щелочно-галоидных кристаллов невелика (от 2 до 3).  [c.165]

Легируют пленки гидрогенизированного аморфного кремния в процессе их роста атомами фосфора или бора (соответственно донорная и акцепторная примеси), для чего добавляют к силану газообразные фосфин РНз или диборан ВаНв. Молекулы этих газов, как и молекулы силана, разлагаются в плазме тлеющего разряда, в результате чего их атомы попадают в растущую пленку а-51 Н.  [c.16]

Как уже указывалось, особенностью гидрогенизированного аморфного кремния является возможность эффективного управления его электрическими свойствами легированием донорной или акцепторной примесью. Зависимость удельной электропроводности о гидрогенизированного аморфного кремния при комнатной температуре от состава газовой смеси показана на рис. 7 (на оси ординат отложены соотношения концентраций N диборан — силан и фосфин — силан). Пленки а-51 Н наносились раз,ложением силана в тлеющем разряде количество легирующей примеси регулировалось контролируемым изменением содержания в газовой смеси фосфина и диборана (соответственно при легировании фосфором и бором). Как видно из рис. 7, нелегированный гидрогенизирован-  [c.17]

Образовавшийся объемный положительный заряд нескомпенсированных ионов донорной примеси будет препятствовать дальнейшей диффузии дырок из р-области в п-область. Отрицательный объемный заряд ионов акцепторной примеси препятствует диффузии электронов в р-область, нескомпенсированные ионы примеси создают на гранште раздела для основных носителей заряда потенциальный барьер, преодолеть который могут только те основные носители, которые обладают достаточной кинетической энергией (рис. 3.17, в).  [c.68]

Удельное электросопротивление германия весьма высокой чистоты достигает 0,6 ом Незначительные количества примесей влияют на тип проводимости германия и понижают его электросопротивление. К примесям, создающим электронную проводимость германия, относятся, например, мышьяк, сурьма, фосфор (донорные прпмеси). Примеси бора, алюминия, галлия, индия (акцепторные примеси) обусловливают проводимость дырочного типа. Термическая обработка также сильно влияет на электрические свойства германия, в частности на тип проводимости (фиг. 86).  [c.527]

Четвертый метод — диффузии сводится к lla ыы e-ниго поверхностного слоя полупроводника при достаточно высокой температуре донорной или акцепторной примесью из газовой фазы, или из предварительно напыленного слоя. Получение заданных размеров и формы р- -перехода достигается применением масок. Рассмотренные методы применяют также для получения в кристалле областей с различной величиной удельной проводимости.  [c.185]

Рио. 8-1. Влияние примесей на энергетическую диаграмму полупроводникои а — собственный полупроводник б — полупроводник с донор-ной примесью, электропроводность электронная (л-ти-па) в — полупроводник с акцепторной примесью, электропроводность дырочная (р-типа)  [c.232]


Смотреть страницы где упоминается термин Акцепторные примеси : [c.199]    [c.389]    [c.158]    [c.239]    [c.118]    [c.356]    [c.35]    [c.67]    [c.81]    [c.284]    [c.282]    [c.172]    [c.182]    [c.195]   
Физика. Справочные материалы (1991) -- [ c.155 ]

Теория твёрдого тела (0) -- [ c.147 ]



ПОИСК



Акцепторные примеси II 199. См. также

Акцепторные примеси II 199. См. также р — re-переход Полупроводники Примеси в полупроводниках

Прима

Примеси

Примеси акцепторные, донорные



© 2025 Mash-xxl.info Реклама на сайте