Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентные флуктуации

Рис. 5.18. Спектры когерентности флуктуаций интенсивности коллимированного- Рис. 5.18. <a href="/info/362788">Спектры когерентности</a> <a href="/info/362797">флуктуаций интенсивности</a> коллимированного-

МЫ принимаем с одной оговоркой основной вклад в флуктуации давления в точке Р дается источниками, расположенными на минимальном расстоянии от Р, отчасти потому, что группы источников с сильно меняющимся расстоянием от Р дают флуктуации переменной фазы в Р, которые стремятся взаимно уничтожить суммарный эффект ( разрушающая интерференция ), в то время как флуктуации от источников, расстояние от которых до Р почти постоянно, имеют почти постоянную фазу и эти когерентные флуктуации могут складываться в значительное суммарное поле.  [c.93]

При ускоренном охлаждении и больших степенях переохлаждения вместо стабильной фазы 0 часто образуется метастабиль-ная фаза 0, содержащая обычно меньше растворенного компонента, чем в стабильной (см. рис. 13.6). Фаза 0 зарождается гетерогенно предпочтительно на малоугловых границах блоков внутри зерен, скоплениях вакансий и отдельных дислокациях. Они имеют полностью или частично когерентные границы раздела. Возникновение метастабильных фаз обусловлено меньшим значением энергетического барьера при их зарождении, чем стабильных. Кроме того, для возникновения метастабильной фазы требуются меньшие концентрационные флуктуации. При длительной выдержке может произойти переход 0 в 0, в результате чего будет достигнуто равновесное состояние сплава с минимальной свободной энергией.  [c.498]

Идея метода поясняется схемой рис. 9.15, б. Два фотоумножителя Ру и регистрируют излучение в двух изображениях одной и той же звезды, разнесенных на расстояние О. Усиленные фототоки перемножаются и усредняются за большой промел<уток времени в устройстве С (коррелятор). Поскольку фототеки пропорциональны интенсивностям, измеряемая величина, обозначаемая Су , характеризует степень корреляции флуктуаций интенсивности в двух изображениях звезды (ср. 22). Более детальный анализ показывает, что С12 ел 1 + у 2, т. е. величина Оу , как и степень когерентности зависит от комбинации ОО/К и уменьшается с увеличением расстоя-  [c.197]

В отличие от классического, или рэлеевского, рассеяния комбинационное рассеяние света является некогерентным. Когерентность рэлеевского рассеяния означает закономерное соотнощение между фазами световых волн, рассеянных отдельными участками рассеивающего объема. Именно вследствие когерентности в отсутствие флуктуаций плотности или анизотропии рассеянный свет уничтожился бы в результате интерференции. Флуктуации не нарушают распределения фаз, но вводят случайное распределение амплитуд рассеянных волн. В случае комбинационного рассеяния фазы распределены совер-  [c.126]


После установления существования квантовых флуктуаций света Вавилов сделал попытку обнаружить квантовые свойства в тех световых явлениях, которые считались типично волновыми. Прежде всего это относится к интерференции когерентных световых пучков при предельно малой их интенсивности.  [c.166]

КОГЕРЕНТНОСТЬ СВЕТА В КВАНТОВОЙ ОПТИКЕ Беседа. Небольшой предварительный диалог 287 13.1. Интерференционные опыты. Когерентность первого и более высоких порядков 289 13.2. Флуктуации числа фотонов 293 13.3. Состояния квантованного поля излучения  [c.239]

Более тонкими (выявляющими флуктуации интенсивности) являются интерференционные опыты, имеющие дело с когерентностью второго порядка. В них исследуется корреляция световых колебаний в четырех пространственно-временных точках. В общем случае функцию когерентно-  [c.292]

Исследования интерференции интенсивностей и когерентности второго и более высоких порядков существенно расширили область классических интерференционных проблем. и исследования стали возможны благодаря развитию в последние десятилетия техники счета фотонов (техники фотоотсчетов), о ней будет рассказано в 13.2. Они привели к возникновению нового метода измерения когерентных свойств света, называемого спектроскопией флуктуаций интенсивности.  [c.293]

Лазерный луч в турбулентной атмосфере. При прохождении лазерного луча в турбулентной атмосфере наблюдаются [32] флуктуации фазы в световом пучке, нарушение когерентности, изменение средней интенсивности излучения на неоднородной трассе, случайные смещения центра тяжести светового пучка, сопровождаемые дрожанием лазерных пучков. Все эти эффекты существенны только при большом ходе х лазерного луча. Кроме того, в интерферометрии наиболее важна разность параметров двух интерферирующих лучей. Отсюда целесообразно обеспечить прохождение этих лучей по возможно более близким направлениям, чтобы не нарушать их когерентность.  [c.93]

Радиус рл когерентности плоской волны при очень сильных флуктуациях в атмосфере равен р , = О, ) 1 ( e/ x/о л ) в случае влияния внутреннего масштаба турбулентности /о  [c.93]

Т. к. реально невозможно полно определить состояние поля, то обычно считается, что результаты экспериментов свидетельствуют в пользу к.-л. из моделей поля. Наиб, распространёнными среди них в К. о. являются модели когерентного излучения, теплового излучения, их суперпозиции и нек-рые др. Характерные различия между полями проявляются часто уже во флуктуациях их интенсивности, определяемых нов-мированным коррелятором  [c.294]

Кан показал, что влияние поверхностных эффектов можно считать пренебрежимо малым. Что касается энергии упругих искажений, возникающих при когерентных флуктуациях состава, то она, во-первых, уменьшает движущую силу распада и, таким образом, подавляет его, так что границы спинодали смещаются в сторону более высоких температур и растет диффузионная подвижность. Величина смещения из-за энергии деформации зависит от относительного изменения периода решетки на единицу концентрации и может быть велика в системе А1 — Zn, где разница в атомных диаметрах Ad/d составляет только 2%, смещение равно 40° С, а в системе Аи — Pt, где Adid 4%, смещение достигает 200° С [185].  [c.218]

Кавитация 52, ИЗ, 565 Каустика 575, 578 Квадруполь 69, 78 Квазиодномерные волны 502 Кельвина клин корабельных волш 335, 487, 574, 575, 580 Когерентные флуктуации 93 Количество движения 45 Компактная область 129 Компактность 116 Компактное распределение источников 448, 568—572 Компактный источник 9, 508 Комплексная проводимость 142,144 Конвективная скорость 13 Кортевега — де Фриза уравнение-557, 562, 584 Коэффициент теплопроводности 107 Критическая глубина 252, 57 Критический слой 578 Критическое значение 117 Крылья насекомых 59  [c.593]

При высоких (закалочных) скоростях охлаждения и степенях переохлаждения в некоторых сплавах типа твердых растворов замещения (алюминиевых, медных, никелевых и др.) образуются особого рода метастабильные фазы, представляющие собой локальные зоны с повышенной концентрацией легирующего элемента. Из-за различия в атомных диаметрах металла-растворителя и легирующего элемента скопление последнего вызывает местное изменение межплоскостных расстояний. Эти зоны называют зонами Гинье — Престона (ГП). Учитывая, что тип решетки не изменяется, зоны ГП часто называют предвыделениями . Они имеют форму тонких пластин или дисков и размеры порядка мкм. Границы их раздела полностью когерентны, поэтому поверхностная энергия зон пренебрежимо мала. У зон малого размера энергия упругих искажений решетки также мала, поэтому энергетический барьер для их зарождения весьма невелик. Зоны ГП зарождаются гомогенно на концентрационных флуктуациях. Особенность образования зон ГП — быстрота и безынкубационность их возникновения даже при комнатной и отрицательной температурах. Это обусловлено повышенной диффузионной подвижностью легирующих элементов, которая связывается с пересыщением сплава вакансиями при закалке.  [c.498]


В радиотехнике также по.чезно введенное понятие длины когерентности. Но если исключить различные технические непо.чад-ки и недостатки схемы и связывать Tkoi только с флуктуациями в генераторе радиоволн, возникающими, например, вследствие "дробового эффекта" (см. 8.1), то для Тког получается величина порядка 100 ч, что соответствует длине когерентности сх ог а 10 км. Эта длина больше размеров солнечной системы, что означает отсутствие принципиального предела дальности радио-интерферометрических измерений. Эффективность такого метода определяется Jшшь. энергетическими соотношениями (в частности, отношением сигнал/шум) и уже упоминавшимися техническими погрешностями используемых радиотехнических устройств.  [c.189]

Метод оказался менее чувствительным к точности установок зеркал и флуктуациям атмосферы, что позволило раздвигать зеркала на большее расстояние и измерять меньшие угловые диаметры звезд (вплоть до 0,0005"). Укажем также, что модификация метода Брауна и Твисса оказалась очень перспективной при измерении временной когерентности интенсивностей, позволила получить интересные результаты и существенно расширить представление о когерентности высших порядков.  [c.337]

За последние годы существенно повысился интерес к вопросам, связанным со статистическими характеристиками света. Интенсивно изучаются когерентные световые поля, обладающие неклассической статистикой фотонов. Эти работы, в частности, имеют целью уменьшить флуктуации фотоприема до уровня, определяемого дробовым шумом фототока. В рамках этой книги невозможно рассматривать эти работы, основанные на квантовой электродинамике и представляющие синтез волновых и корпускулярных представлений. Мы ограничимся предельно кратким указанием на цикл работ , в которых возможность наблюдения флуктуаций фотонов изучалась в классических схемах волновой оптики (интерферометры Юнга и Майкельсона) с использованием современных методов регистрации фототока.  [c.451]

Будем считать, что при Т = Тс в магните существуют когерентные (согласованные) флуктуации любых масштабов, сплетенные воедино малые флуктуации включены в большие и т. д. Короче говоря, флуктуации при критической TefvinepaType имеют самоподобную форму.  [c.86]

Этот экспериментальный результат согласуется с теорией. Как показал Т. Глаубер, идеальный одномодовый лазер при значительном превышении над порогом генерирует излучение в состоянии, называемом когерентным-, в этом состоянии фотоны действительно распределены по Пуассону (см. 13.3). Поле в таком состоянии ближе всего к классической синусоидальной волне. Существенный вывод квантовой оптики состоит в том, что даже в идеальной световой волне имеют место флуктуации чисел фотонов.  [c.298]

Флуктуации интенсивности во взаимно когерентных волнах. С помощью описанной методики Вавиловым были исследованы флуктуации интенсивности во взаимно когерентных волнах. Волна от источника S (рис. 14) бипризмой Френеля П разделяется на две взаимно когерентные волны. На экране R в области пересечения волн возникает интерференционная картина, наличие которой свидетельствует о взаимной когерентности волн, т. е. о существовании постоянных фазовых соотношений между ними. Здесь мы не принимаем во внимание некоторые тонкости, связанные с частичной когерентностью волн, поскольку это не вносит ничего существенного в принципиальную сторону обсуждаемого вопроса. Вне области пересечения волн (на рис. 14 вне закрашенной области) интерференционная картина не образуется и можно наблюдать неинтерферирующее излучение от мнимых источников S и S". Вспышки излучения источника S бипризмой Френеля трансформируются во вспышки взаимно когерентных излучений мнимых источников S и S". Методикой Вави-  [c.31]

Излучение лазера происходит на строго фиксированной частоте v, которая, однако, подвержена незначительным изменениям на величину Av за счет флуктуаций процесса излучения. Отрезок времени At, в течение которого это изменение не сменится другим, принято называть временной когерентностью. За время меньше At лазер генерирует практически монохроматическое излучение с постоянной фазой колебаний. Расстояние, которое проходит излучаемая ОКГ последовательность волн (цуг) за это время L = = сА1 (с — скорость света), принято называть длиной когерентности. Для большинства серийных многомодовых ОКГ L sO,l. .. 0,5 м. Для лучших одномодовых ОКГ L л 10ч- 100 м.  [c.52]

Механические свойства гетерогенных систем подробно исследованы в работах [19, 95,138—147]. Улучщение прочностных характеристик, прежде всего предела текучести, этих систем по сравнению с гомогенными материалами обусловлено наличием структурных неоднородностей, создающих дополнительное сопротивление движению дислокаций. Согласно работе [145], эти неоднородности можно классифицировать следующим образом 1) локальные изменения, вызванные флуктуациями состава и приводящие к образованию метастабильных групп-кластеров, которые могут длительно существовать при низких температурах в силу замедленных процессов диффузии 2) мета-стабильные зоны типа зон Гинье — Престона (предвыделения) 3) выделения второй фазы, имеющие когерентную или некогерентную связь с матрицей, а также включения второй фазы 4) смесь двух фаз, представляющая собой поликристалл, состав отдельных зон которого может быть различным (следуя Гуарду [139], часто применяется термин конгломератная структура ).  [c.71]

Интересно, что согласно больцмановскому принципу упорядоченности, выражаемому каноническим распределением, вероятность возникновения бенаровской конвекции почти равна нулю. Каждый раз, когда в системе, находящейся вдали от равновесия, возникают новые когерентные состояния, оценка ее с позиций концепции вероятности, основанной на подсчете числа микросостояний, становится бессмысленной. Что касается систем, в которых возникает конвекция Бенара, то можно полагать, что небольшие конвекционные потоки, представляющие собой отклонение системы от некоторого среднего ее состояния, в них существуют всегда. Однако пока величина градиента температуры не превышает некоторого критического его значения, эти флуктуации гасятся и исчезают. Напротив, когда величина градиента температуры превышает его критическое значение, амплитуда некоторых флуктуаций возрастает, что в конечном счете приводит к формированию макроскопического потока. В результате возникает новый надмолекулярный порядок, по существу представляющий собой гигантскую флуктуацию, стабилизируемую благодаря обмену энергией между системой и окружающей ее средой. Это и есть порядок, характеризуемый наличием в системе диссипативных структур.  [c.130]


ФАКТОР <есть причина, движущая сила какого-либо процесса, явления, определяющая его характер или отдельные его черты магнитного расщепления — множитель в формуле для расщепления уровней энергии, определяющий величину расщепления, выраженный в единицах магнетона Бора размагничивающий— коэффициент пропорциональности между напряженностью размагничивающего магнитного поля образца и его намагниченностью структурный—величина, характеризующая способность элементарной ячейки кристалла к когерентному рассеянию рентгеновского излучения, гамма-излучения и нейтронов в зависимости от внутреннего строения ячейки) ФЕРРИМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты ионов, входящих в его состав, образуют две или большее число подсистем (магнитных подрещеток) ФЕРРОМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты атомов или ионов самопроизвольно ориентированы параллельно друг другу ФИЛЬТРАЦИЯ—движение жидкости или газа через пористую среду ФЛУКТУАЦИЯ <есть случайное отклонение значения физической величины от ее среднего значения, обусловленное прерывностью материи и тепловым движением частиц абсолютная — величина, равная корню квадратному из квадратичной флуктуации квадратичная 01ли дисперсия) равна среднему значению квадрата отклонения величины от ее среднего значения относительная равна отношению абсолютной флуктуации к среднему значению физической величины) ФЛУОРЕСЦЕНЦИЯ — люминесценция, быстро затухающая после прекращения действия возбудителя свечения ФОРМУЛА (барометрическая — соотношение, определяющее зависимость давления или плотности газа от высоты в ноле силы тяжести Больнмаиа показывает связь между энтропией системы и термодинамической вероятностью ее состояния Вина устанавливает зависимость испускательной способности абсолютно черного тела от его частоты в третьей степени и неизвестной функции отношения частоты к температуре)  [c.292]

Квантовые шумы могут существенно исказить результаты интерференц. опыта, если полное число фо-тонав, зарегистрированных в максимуме интерференц, картины, невелико. Т. к. при осуществлении интерференц. опыта можно собрать излучение с площади, имеющей порядок величины го, и проводить измерения в течение вре.мени т,,, то при этом будут использованы все фотоны из объё.ма = т. е. из объёма когерентности. Еслп ср. число N фотонов в объеме К., называемое параметром вырождения, велико, то квантовые флуктуации числа зарегистрированных фотонов относительно невелики и не оказывают существ, влияния на результат измерений. Если же N невелико, то эти флуктуации будут препятствовать измерениям.  [c.395]

КОРРЕЛЯЦИОННАЯ ТЕОРИЯ случайных функции — описание случайных ф-дий g [х] при помощи статистич. моментов 1-го и 2-го порядка ( (х)) п ( (a i) (j 2)). Аргумент случайной ф-ции х может иметь любую размерность. Если (л ) — гауссова случайная ф-ция, полностью определяемая первым и вторым моментами, то К. т, даёт её полное описание. Обычно К. т. применяют для таких физ. задач, к-рые описываются линейными ур-нпями вида (я ) ( г) = F x), где Ь х) — нек-рый линейный оператор, F х) — случайная ф-ция. В. этом случае можно получить ур-ния и для статистич. моментов L x) x)) F [х]), ([L(j i)S(.ri)][L( 2)5(3 2)]>=(/ (3 i)/ (a a)). Для нелинейных задач К. т. обычно имеет приближённый характер. К. т. наиб, приспособлена для описания однородных (стационарных) случайных ф-цпй, для К-рых справедлива Винера — Хинчина теорема. К. т. используют в большинстве физ. приложений случайных ф-ций, напр, в теории флуктуаций и теории когерентности.  [c.465]

Рассеяние нейтронной волны на одиночном ядре описывается с помощью т. н, амплитуды рассеяния Ь, имеющей смысл амплитуды сферич. волны, испускаемой ядром, если на него падает плоская возбуждающая волна единичной амплитуды. Амплитуда рассеяния зависит от массового числа ядра А, его заряда2, а также от относит, ориентации спинов нейтрона и ядра. Поэтому сумма сферич. волн, рассеянных ансамблем нетождеств. ядер, состоит из слагаемых с разл. амплитудами. В Н. с. важна усреднённая амплитуда (Ь), наз. когерентной амплитудой рассеяния. Усреднение амплитуд проводится по спиновым состояниям, изотопному и химическому составу ансамбля ядер, эквивалентных в структурном отношении. Среднеквадратичная флуктуация (Ь ) — (6) определяет интенсивность некогерентного рассеяния. Интенсивность когерентного рассеяния — дифракции нейтронов зависит от атомной структуры вещества, тогда как интенсивность некогерентного рассеяния к структуре нечувствительна.  [c.284]

Перенос излучения в условиях немгновенностн элементарного акта рассеяния. Изложенный выше раздел теории П, и. относится к области X а, где X — длина водны излучения, а — характерный масштаб макро-скопич. флуктуаций в среде, на к-рых происходит рассеяние. В этом случае элементарный акт рассеяния света единичным объёмом среды описывается в ур-нии (1) сечением рассеяния <т, соответствующим данному типу флуктуаций. Тано11 подход применим также и к нерезонансному рассеянию света на микроскопич. флуктуациях распределения частиц по координатам и импульсам. При этом о уже соответствует сечению рассеяния света отдельной частицей (когерентному, щ = е), или некогерентному комбинационному рассеянию света атомом или молекулой, комптоновскому рассеянию свободным электроном и др.). Общность формализма описания П. и. в указанных случаях базируется на мгновенности процесса рассеяния фотона средой (макроскопич. ансамблем или отдельной частицей), что и позволяет свести описание П. и. к замкнутому ур-нию (1) Для интенсивности.  [c.567]

СЖАТОЕ СОСТОЯНИЕ электромагнитного поля — состояние доля, при к-ром дисперсии флуктуаций канонически сопряжённых компонент поля не равны. Возможны классич. и квантовые С. с. В первом случае оказываются неравными дисперсии квадратур классич. флуктуаций (см. [1], с. 125) для квантового С. с. дисперсия любой одной канонически сопряжённой компоненты меньше дисперсии в когерентном состоянии. Понятие С. с. возникло в процессе изучения (I960—70-е гг.) статистич. характеристик излучения (долазерные эксперименты по корреляциям интенсивности), детального исследования необычных свойств лазерного света. Различают С. с. квадратурносжатые н состояния с подавленными флуктуациями числа фотонов или фазы.  [c.488]


Смотреть страницы где упоминается термин Когерентные флуктуации : [c.680]    [c.153]    [c.337]    [c.288]    [c.690]    [c.761]    [c.99]    [c.30]    [c.270]    [c.165]    [c.272]    [c.391]    [c.391]    [c.395]    [c.329]    [c.329]    [c.343]    [c.268]    [c.276]    [c.488]    [c.489]   
Волны в жидкостях (0) -- [ c.93 ]



ПОИСК



Когерентная (-ое)

Когерентная и некогерентная интенсивности и пространственная корреляция флуктуаций в плоской волне

Когерентность

Суперпозиция волн со случайными фазами. Время разрешения. Усреднение по периоду колебаний. Влияние увеличения промежутка времени на результат усреднения. Время когерентности. Длина когерентности Флуктуации плотности потока энергии хаотического свеПоляризация Фурье-аналнз случайных процессов

Флуктуации

Флуктуации интенсивности световою потока. Опыты Вавилова. Флуктуации интенсивности во взаимно когерентных волнах. Флуктуации интенсивности в поляризованных лучах. Опыт Брауна и Твисса Поляризация фотонов

Флуктуации интенсивности частично когерентного излучения



© 2025 Mash-xxl.info Реклама на сайте