Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости (усталости) коррозионный

Специфика влияния механической обработки на коррозионную усталость стали заключается в изменении под влиянием обработки электрохимической неоднородности. Влияние концентраторов напряжений на предел выносливости в коррозионных средах сказывается в меньшей степени, чем на воздухе.  [c.404]

При испытании специальных плавок сталей [113] установлено (табл. 7), что легирование стали хромом, никелем, марганцем, кремнием до 5 % не повышает сопротивления коррозионной усталости отожженной среднеуглеродистой стали. При введении 1-2 % каждого из легирующих элементов условный предел выносливости, как правило, уменьшается с 80 до 30—50 МПа. При увеличении содержания указанных легирующих элементов до 5 % существенно повышается предел выносливости в воздухе и практически не меняется условный предел коррозионной выносливости среднеуглеродистой стали, что ставит под сомнение эффективность применения легированных сталей для изготовления изделий, работающих в условиях коррозионной усталости без дополнительной защиты. Определенной взаимосвязи между временным сопротивлением, пределами выносливости и коррозионной выносливости не обнаружено.  [c.53]


Пределы прочности и выносливости стали на воздухе не являются критериями поведения металла в условиях коррозионной усталости. В этих условиях может оказаться бесполезной замена одной стали другой, кроме специальной нержавеющей. Результаты многих исследований показывают, что химический состав углеродистых сталей мало влияет на их коррозионную усталость. Предел выносливости в коррозионной среде низколегированных сталей незначительно больше, чем углеродистых. Большой эффект дает применение жаропрочных и кислотостойких сталей. Применение наклепа в качестве предварительной операции перед защитными от коррозии покрытиями повышает выносливость и особенно в условиях коррозионного воздействия на деталь.  [c.408]

Растрескивание. Растрескивание металла под действием периодических или растягивающих напряжений в коррозионной среде называют коррозионной усталостью. Если напряжение не превышает критического значения, называемого пределом выносливости или пределом усталости, то вне коррозионной среды металл не будет разрушаться при сколь угодно большом числе циклов нагружения В коррозионной среде истинный предел усталости обычно не достигается, так как металл разрушается  [c.28]

В коррозионной среде при данном уровне напряжения разрушение обычно наступает при меньшем числе циклов, и истинный предел выносливости не достигается (рис. 7.15). Другими словами, разрушение происходит при любой приложенной нагрузке, если число циклов достаточно велико. Растрескивание металла в результате совместного действия коррозионной среды и периодической или переменной нагрузки называется коррозионной усталостью. Почти всегда разрушения этого типа больше, чем сумма разрушений в результате действия коррозии и усталости отдельно.  [c.156]

Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания).  [c.157]


При одновременном воздействии на детали циклических нагрузок и коррозионной среды возникает явление более интенсивного накопления усталостных повреждений, называемое коррозионной усталостью. Предел выносливости вследствие влияния коррозионной среды снижается в 3 раза и более.  [c.24]

При воздействии на металл коррозионных сред и фреттинг-кор розии на кривой усталости отсутствует горизонтальный участок, по этому установить можно только ограниченный предел выносливости. Базу испытаний значительно увеличивают, если ставится задача выяснить влияние среды, фреттинг-коррозии и т. п,  [c.109]

Сопротивление таких кривых, полученных при испытании металла на воздухе и в коррозионной среде (например, воде, паре), дает информацию по влиянию Коррозионной среды на предел выносливости. Однако не всегда такое сопротивление может быть успешно использовано для оценки стойкости металла к коррозионной усталости. Это объясняется тем, что для некоторых металлов определяющую роль в усталостном разрушении играет скорость распределения трещины, а не возникновение первоначального дефекта, из которого она начинает свой рост. Целесообразно в этой связи исследовать развитие усталостной трещины на образцах с предварительно нанесенным надрезом, а данные о влиянии коррозионной усталости представлять в виде зависимостей роста усталостной трещины от интенсивности напряжений.  [c.184]

Повышается коррозионная стойкость, длительная прочность и сопротивление усталости Повышается предел выносливости  [c.396]

Коррозионная усталость. Понижение предела выносливости при одновременном воздействии переменно действующих нагрузок и коррозионной среды.  [c.60]

Для количественной оценки сопротивления коррозионной усталости применяют условный предел коррозионной выносливости представляющий собой предел выносливости гладких или надрезанных образцов при совместном действии переменных напряжений и среды при заданной базе N циклов. Индекс R численно указывает на степень асимметрии цикла. Так, при симметричном цикле изгиба условный предел коррозионной выносливости обозначают o pi при пульсирующем цикле а. Если на образец действует осевая переменная нагрузка, то ее обозначают буквой р и ставят после показателя. асимметрии, например, условный  [c.31]

Как показали наши исследования, различие в абсолютных величинах условного предела коррозионной выносливости стали с различным структурным состоянием уменьшается с увеличением базы испытания. Использование закалки с последующим отпуском не дает заметных преимуществ при коррозионной усталости по сравнению с отожженной или нормализованной сталью при длительной эксплуатации, а применение сталей с мар-тенситной структурой без дополнительной защиты может привести к значительному (иногда в десятки раз) снижению условного предела выносливости сталей в коррозионных средах. С увеличением содержания углерода в отожженной стали с 0,03 до 1,09 % имеет место повышение условного предела коррозионной выносливости в пресной воде с 105 до 140 МПа [114].  [c.49]

В заключение необходимо отметить, что инверсия масштабного фактора при коррозионной усталости характерна для углеродистых, низко-и среднелегированных мартенситных нержавеющих сталей, алюминиевых сплавов. Наиболее заметна она при изменении диаметра образца до 50—60 мм (рис. 69) и проявляется при большой базе испытаний, когда коррозионно-усталостное разрушение контролируется электрохимическим фактором. У нержавеющих сталей, склонных к щелевой коррозии, с увеличением диаметра образцов предел выносливости снижается и при испытании и в воздухе, и в коррозионной среде.  [c.136]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]


Исследование одновременного воздействия коррозионной среды и контактного трения на усталостную прочность титанового сплава ВТ6 с 0 = 800- 860 МПа изучено авторами работы [159]. Из кованых заготовок вырезали специальные образцы диаметром рабочей части 20 мм, моделирующие ось с напрессованными втулками. Моделировали два типа закрепления втулок конические напрессованные, передающие изгибающий момент, и цилиндрические, не передающие его. Материалом для втулок служили титановые сплавы ВТ6 (03 = 830 МПа), ПТ-ЗВ ( 3 = 730 МПа) и ВТ1 (а = 580 МПа). Запрессовку втулок производили с различным контактным давлением. Усталостные испытания вели на воздухе и в 3 %-ном растворе МаС1. Обкатывание подлежащих запрессовке частей конических и цилиндрических образцов выполняли с помощью шарикового приспособления при следующих режимах усилие обкатки Я=2000 Н, диаметр шарика 0= 10 мм скорость обкатки 350 об/мин, число проходов два. Кривые усталости образцов с напрессованными втулками, передающими изгибающий момент, при различных контактных давлениях представлены на рис. 101. Предел выносливости гладких образцов без напрессовки втулок был равен 380 МПа при испытании на воздухе и в коррозионной среде. (Напрессовка втулок на неупрочненные 162  [c.162]

Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

При воздействии на металл циклических внешних нагрузок возникает явление коррозионной усталости, т. е. снижение предела выносливости металла в коррозионной среде. По механизму коррозионная усталость имеет много общих закономерностей с коррозионным растрескиванием. В последнее время в практику вошел термин коррозионно-механическая прочность, который объединяет коррозионную усталость и растрескивание и определяет способность металла сопротивляться воздействию внешних нагрузок в коррози-опноактивной среде.  [c.34]

Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносиГ убытки, исчисляемые миллионами рублей.  [c.11]

В качестве примера на рис. 13 приведено семейство кривых коррозионной усталости различных вероятностей разрушения образцов титанового сплава ВТ14, построенных методом линейного регрессионного анализа с учетом порога чувствительности по циклам. Образцы испытаны при различных уровнях напряжения (1,47 1,35 1,23 1,17 1,11) от условного предела выносливости [c.36]

Многими советскими и зарубежными авторами качественно установлено смещение электродного потенциала металла в процессе коррозионной усталости в отрицательную сторону. Автором совместно с А.М.Крох-мальным [118] изучен характер изменения электрохимических свойств сталей при коррозионно-усталостном разрушении. Показано, что условный предел коррозионной вьжосливости образцов железоуглеродистых сплавов в 3 %-ном растворе Na I по сравнению с испытаниями в воздухе резко понижается и его абсолютная величина при базе 5-10 циклов находится в интервале 20—50 МПа и мало зависит от исходной прочности сталей. Предел выносливости армко-железа и сталей 20 и 45 в воздухе соответственно составлял 150 220 и 250 МПа.  [c.50]


Рафинирование оказывает существенное влияние на выносливость высокопрочной закаленной стали ШХ15 в воздухе и в такой гпабоагрессивной среде, как влажный воздух. В 3 %-ном растворе Na I приЛ/=5 10 цикл нагружения условный предел выносливости снизился в 15—20 раз и составил всего 5—6 % от пределов выносливости этих сталей на воздухе, С увеличением агрессивности среды эффект от рафинирования с помощью переплавов при коррозионной усталости уменьшается, а при больших базах испытания, когда решающая роль принадлежит электрохимическому фактору — практически полностью исчезает.  [c.56]

МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным для разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали.  [c.63]

Исследование сопротивления коррозионной усталости проводили на образцах диаметром 5 и 10 мм при чистом изгибе с вращением и частотой нагружения 50 Гц. Установлено (рис. 30), что при испытании в воздухе у исследуемых сплавов при N-2 10 цикл истинный предел выносливости отсутствует. Микролегирование сплава АМгб цирконием существенно повышает сопротивление сплава усталостному и коррозионно-уста-лостному разрушению, особенно в области больших амплитуд циклических напряжений.  [c.68]

Установлено (рис. 32), что при испытании сплава во влажном воздухе и в растворе хлорида натрия ViMeei место проявление процессов коррозионной усталости, что выражается в отсутствии истинного предела выносливости при испытании гладких образцов и образцов с концентраторами  [c.71]

Проведено также испытание сплава с предварительным коррозионным поражением, характерным при его эксплуатации в морских условиях. Поскольку коррозия сплава в морСкой воде имеет электрохимическую природу, для интенсификации процесса предварительной коррозии образцы подвергали анодной поляризации. При этом коррозионные поражения имели также полусферическую форму размером в десятые доли миллиметра. Показано, что предварительная коррозия снижает предел выносливости сплава в воздухе с 520 до 395 МПа. В 3 %-ном растворе Na I условный предел выносливости образцов после предварительной коррозии составил 380 МПа, в то время как у непораженных образцов - 480 МПа. Понижение сопротивления усталости сплава после предварительной коррозии объясняется ее избирательным характером, что приводит к образованию концентраторов напряжений.  [c.71]

Нами исследовано также влияние режимов термической обработки на сопротивление коррозионной усталости во влажном воздухе некоторых нержавеющих сталей мартенситного класса. У стали 13Х12Н2ВМФ, закаленной с 1020°С и подверженной отпуску при 570 и 660°С, во влажном воздухе предел выносливости снижается на 30—35 %.  [c.104]

Исследования усталости образцов из стали 45 диаметром 5 мм в воздухе с относительной влажностью 40 75 95 и 100 %, а также при капельной подаче дистиллированной воды (имитация дождя), показали, что заметное влияние на уменьшение условного предела выносливости гладких образцов начинает оказывать влажность не менее 95 %. Увеличение влажности до 100 % привело к снижению условного предела коррозионной усталости стали 45 более чем на 13 % по сравнению с испытанием при влажности 40 % t162].  [c.105]

Было показано, что сопротивление усталости образцов в воздухе при чистом изгибе выше, чем при растяжении — сжатии. Предел выносливости при изгибе составил а =495 МПа, в то время как при растяжении — сжатии о 1р (. =410 МПа. При воздействии 3 %-ного раствора Na I эта закономерность изменяется в противоположном направлении. Условный предел выносливости при изгибе и растяжении — сжатии соответственно составил 200 и 340 МПа. Такой характер влияния вида нагружения на сопротивление коррозионно-усталостному разрушению связан с тем, что среда сильно разупрочняет приповерхностный слой металла образца, который несет основную нагрузку при циклическом изгибе. При циклическом же растяжений — сжатии значение напряжений по сечению образца выравнивается и роль приповерхностного слоя значительно меньше. На основании обобщения имеющихся данных можно сделать заключение, что основными напряжениями, способствующими зарождению и особенно развитию коррозионно-усталостных трещин, являются Нормальные напряжения.  [c.115]

Проведенные нами опыты на образцах диаметром 10 и 50 мм (гладких и с концентратором напряжений) из стали 12Х18НдТ, обладэюц]1ей относительно высокой коррозионной выносливостью в растворе Na I, а также аналогичные исследования других авторов [114] не обнаружили инверсии масштабного эффекта при коррозионной усталости. При испытании образцов диаметром 10 мм быЛо установлено, что коррозионная среда практически не уменьшает предела выносливости. гладких образцов и катастрофически снижает выносливость образцов с концентратором напряжений, т.е. наблюдается картина, противоположная той, которую наблюдали для углеродистых и многих легированных сталей. Такое поведение аустенитной нержавеющей стали объясняется ее склонностью к щелевой коррозии в вершине трещины.  [c.139]

На рис. 88 приведены результаты исследования усталости и коррозионной усталости стали 13Х12Н2ВМФ после обкатки. Эти результаты находятся в соответствии с данными других исследователей и показывают, что ППД гладких образцов повышает их предел выносливости на 20— 30 %. По влиянию обкатки на коррозионную усталость сталей нами получены чрезвычайно важные с практической точки зрения результаты, четко указывающие на ограниченность защитного действия поверхностного пластически деформированного слоя. Действительно, при базе до 5-10 -10 10 цикл нагружения выносливость стали после ППД в 3 %-ном растворе Na I мало отличается от выносливости в воздухе, т.е. подтверждается высокая эффективность ППД как метода повышения сопротивления коррозионно-усталостному разрушению. Однако увеличение базы испытания выше указанной привело к неожиданным результатам — резкому снижению уровня разрушающих циклических нагрузок. В довольно узком диапазоне долговечности разрушающее напряжение у обкатанных образцов в коррозионной среде снизилось с 550—600 МПа до 200— 240 МПа, т.е. в 2—3 раза. Условный предел коррозионной выносливости образцов, подвергнутых ППД  [c.161]


Применение обкатки эффективно для повышения сопротивления усталости и коррозионной усталости титановых сплавов. Так, например, обкатка шариком (диаметр 32 мм) с усилием 3000 Н в один проход образцов диаметром 20 мм из а-титанового сплава средней прочности повышает их предел выносливости в воздухе со 125 до 200 МПа, а в 3 %-ном растворе Na I — с 90 до 170 МПа при базе 5 10 цикл. Аналогичные результаты получены при обкатке образцов диаметром 45 мм из того же сплава.  [c.164]

Как указывалось выше, одним из технологических приемов повышения сопротивления усталости и особенно коррозионной усталости углеродистых, низколегированных и аустенитных нержавеющих сталей является алмазное выглаживание. При обеспечении одинаковой с полированием шероховатости поверхности образцов (9—10 класс) выглаживание увеличивает глубину и степень наклепа, микротвердость поверхностных слоев. Предел выносливости образцов возрастает на 20-30 %, а условный предел коррозионной выносливости образцов из сталей 40ХН2МА и 12Х18Н10Т в нейтральных электролитах при ограниченной базе 10 — 3 10 цикл — до 2 раз [173, с. 96-98, 218].  [c.164]

Нами рассмотрено влияние дополнительного отпуска и температуры испытаний на стабильность упрочненного с помощью обкатки поверхностного слон, а также сопротивление усталости и коррозионной усталости некоторых нержавеющих сталей [219]. Показано, например, что дополнительный отпуск при 200 и 400°С обкатанных с усилием 800 Н образцов из стали 13Х12Н2МВФБА повышает их предел выносливости на 100 и 50 МПа соответственно. Дополнительное повышение выносливости упрочненных ППД образцов можно отнести за счет деформационного старения наклепанного слоя, которое связано с блокированием дислокаций атомами углерода и азота, содержащимися в твердом растворе. Механические свойства наклепанного слон после отпуска стали при 400°С ниже, чем после отпуска при 200°С, и деформационное старение проявляется слабее, а предел выносливости снижается.  [c.165]

Эффективность поверхностного наклепа образцов стали 13Х12Н2ВМФ проявилась в повышении сопротивления усталости и коррозионной усталости при комнатной и повышенной (400°С) температурах (см. рис. 88). Обкатка образцов привела к повышению предела выносливости на 25 % и условного предела коррозионной выносливости во влажном воздухе на 40 %, а в среде 3 %-ного раствора Na I - в 1,5 раза. Условный предел выносливости упрочненной стали в воздухе при 400°С повысился на 30 %, а при периодическом смачивании водой — на 45 %.  [c.165]

С увеличением времени испытания при 400°С сопротивление усталости упрочненных образцов снижается более резко, чем образцов без упрочнения. Старение наклепанного слоя при 200 и 400°С дополнительно повьюи-ло предел выносливости обкатанных образцов нержавеющей стали в воздухе, и в коррозионной среде в среднем на 15 и 25 % соответственно.  [c.165]

Диффузионное насыщение стальных изделий бором приводит к образованию на их поверхности слоя, состоящего из боридов FeB и Fe В, а также боридного цементита, если в стали содержится повышенное содержание углерода. Бориды железа обладают высокой коррозионной стойкостью в ряде агрессивных сред,в связи с чем можно было бы ожидать существенного повышения сопротивления коррозионно-усталостному разрушению борированных деталей. Нами показано, что борирование при глубине слоя боридов 0,1-0,2 мм повышает предел выносливости образцов из средйе-углеродистой стали с 250 до 300-310 МПа, а в 3 %-ном растворе Na I условный предел выносливости увеличивается с 50 до 100 МПа. Отрицательное влияние борирование оказывает на сопротивление усталости высокопрочных легированных и закаленных сталей, у которых предел выносливости после насыщения может снизиться в несколько раз. Условный предел выносливости при этом увеличивается незначительно. Таким образом, наблюдается несоответствие между коррозионной стойкостью в ненапряженном состоянии и коррозионной выносливостью борированных сталей. Это несоответствие объясняется пористостью боридного слоя, которая при действии циклических механических напряжений обеспечивает лучший контакт коррозионной среды о основным металлом, чем в ненапряженном металле.  [c.174]

Эффективные методы повышения сопротивления коррозионной усталости изделий из среднеуглеродистой стали - поверхностная закалка токами высокой частоты, а также цементация, которые в 2—3 раза повышают предел выносливости образцов из стали 45 в воде, 3 %-ном растворе Na I, в сероводородной воде и в воздухе.  [c.174]

Газовое контактное хромирование при 1100°С в течение 2—20 ч не оказало существенного влияния на выносливость образцов из нормализованной среднеугперо-дистой стали. Предел выносливости хромированных и нехромированных образцов составлял 260-280 МПа. Сравнительно тонкие карбидные слои (до 0,010 мм) приводят к повышению предела выносливости образцов на 15—20 %. Рост трещины карбидного слоя вследствие увеличения выдержки, а также повышения температуры процесса снижает выносливость хромированной стали вплоть до выносливости нехромированной и даже ниже. Так, газовое контактное хромирование при 950°С обеспечивает возникновение сравнительно высоких остаточных напряжений сжатия (1200 МПа), повышает предел выносливости на 15—20 % (табл. 22), однако не приводит к повышению сопротивления коррозионной усталости стали 45 в 3 %-ном растворе Na I из-за точечной несплошности диффузионного слоя. Увеличение вы- держки при насыщении до 10 ч, несмотря на некоторое снижение остаточных сжимающих напряжений, привело к увеличению условного предела коррозионной выносливости с 50 до 100 МПа, что связано с удовлетворительной сплошностью карбидного слон, его высокими антикоррозионными свойствами.  [c.175]


Смотреть страницы где упоминается термин Предел выносливости (усталости) коррозионный : [c.271]    [c.57]    [c.84]    [c.85]    [c.112]    [c.145]    [c.129]    [c.12]    [c.13]    [c.60]    [c.66]    [c.115]   
Методика усталостных испытаний (1978) -- [ c.12 , c.248 ]



ПОИСК



Выносливости предел

Выносливость

Коррозионная усталость

Предел выносливости (усталости)

Предел усталости

Усталость

Усталость выносливость



© 2025 Mash-xxl.info Реклама на сайте