Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметрии свойства атома

Вторая глава посвящена синергетическому анализу Периодической системы атомов элементов. Показано, что Периодическому закону Д.И. Менделеева - зависимости структуры и свойств атомов от массы -отвечает самоподобное изменение квантово-механических свойств атома в точках бифуркаций, отвечающих коллапсу волновой функции. Это позволило связать функцией самоподобия F меру устойчивости симметрии системы Д, с кодом обратной связи F = Aj " , где Aj отвечает иерархическому ряду инвариантных чисел обобщенной золотой пропорции  [c.8]


Описать закон Д.И. Менделеева периодического изменения структуры и свойств атома с ростом массы в виде дискретной самоподобной линейной связи меры устойчивости симметрии атома к росту массы и кодом обратной связи.  [c.200]

Периоды трансляции решетки в различных направлениях определяются в первую очередь силами, действующими между частицами. Поэтому анизотропию можно объяснить в конечном счете различием связей в разных направлениях. При небольшой разнице связей в различных кристаллографических направлениях образуются изометрические структуры, которые не проявляют ярко выраженной анизотропии свойств. Однако эти свойства могут очень резко проявиться в так называемых слоистых структурах, в которых расстояние между атомами и соотношение связей в пределах одной плоскости существенно отличаются от таковых в перпендикулярном к ней направлении. Типичным примером является графит, кристаллизующийся в гексагональной сингонии, который обладает плотной упаковкой атомов в одной плоскости и образует открытую структуру в перпендикулярном к ней направлении. Результатом этого являются характерные различия в твердости, тепло- и электропроводности и т.д. Симметрию свойств кристаллов можно объяснить симметрией их кристаллической структуры. Поэтому кристаллы с высокой симметрией, как например, кристаллы кубической сингонии, обнаруживают высокую симметрию свойств. В этом случае для полного описания зависимости свойств кристалла от направления требуется лишь несколько констант. Напротив число независимых констант для кристаллов триклинной сингонии сильно возрастает.  [c.30]

Реально структура кристаллов отличается от приведенных идеальных схем, в них имеются дефекты. Точечными, нуль-мерными (по протяженности), дефектами являются пустые узлы, или вакансии (рис. 6, а) и межузельные атомы (рис. 6, б) число этих дефектов возрастает с повышением температуры. Важнейшими линейными (одномерными) дефектами являются дислокации (краевые и винтовые), представляющие как бы сдвиг части кристаллической решетки (см. линию ММ на рис. 6, в). Поверхностные (двухмерные) дефекты определяются наличием субзерен или блоков 1, 2 внутри кристалла (рис. 6, г), а также различной ориентацией кристаллических решеток зерен 3, 4 (рис. 6, д). По границам зерен решетка одного кристалла переходит в решетку другого, здесь нарушена симметрия расположения атомов. Дефекты кристаллов оказывают существенное влияние на механические, физические, химические и технологические свойства металлов (см. пр. 4).  [c.19]

Применение. Методами Р. можно определять структуру тв. тел, жидкостей, молекул, магн. и квадрупольные моменты ат. ядер, симметрию поля окружения, валентность ионов, электрич. и магн. свойства атомов, молекул радикалов и др. Методы Р. применяются для качеств, и количеств, анализа в-в, В Р, впервые наблюдалось вынужденное излучение, что привело к созданию квантовых генераторов и усилителей сначала в радио-, а затем в оптич, диапазонах (см. Квантовая электроника, Лазер).  [c.610]


Вещество может рассматриваться в одно и то же время и как континуум и как дисконтинуум. Прерывность вещества проявляется, когда говорят о положениях отдельных атомов. Расположение атомов или ионов представляет собой совокупность элементов, которая может быть охарактеризована как симметричная точечная группа. В аспекте симметрии кристаллы классифицируются на 32 точечные и 230 пространственных групп. Свойствами симметрии можно объяснить многие свойства кристаллов.  [c.72]

При образовании твердых растворов атомы легирующих элементов искажают симметрию электрического поля атомно-кристаллической решетки железа, что вызывает изменение свойств сплава, особенно физических и химических.  [c.47]

Влияние внешнего электромагнитного поля на атом сводится к изменению энергетических уровней и состояний атома, а также свойств симметрии соответствующих волновых функций. Общий подход к рассмотрению вопросов взаимодействия атома с электромагнитным полем состоит в том, что атом и электромагнитное поле рассматриваются как единая система, для которой уравнение Шредингера решается подходящими в конкретной ситуации методами.  [c.245]

Четность является фундаментальным понятием. Она характеризует свойства симметрии ядер, элементарных частиц и вообще любых физических систем по отношению к зеркальным отражениям. Важность этого понятия обусловлена законом сохранения четности, согласно которому физическая система, обладающая зеркальной симметрией в начальном состоянии, сохраняет эту симметрию во все последующие моменты времени. Этот закон справедлив как для электромагнитных взаимодействий, определяющих структуру атомов и молекул, так и для ядерных сил, определяющих структуру ядер. О нарушении закона сохранения четности в так называемых слабых взаимодействиях см. гл. VI, 4, п. 10 и гл. VII, 8, п. 7.  [c.73]

Строение и дефекты твердых тел. Кристаллическая решетка — это присущее кристаллическому состоянию вещества регулярное расположение частиц (атомов, ионов, молекул), характеризующееся периодической повторяемостью, в трех измерениях. Полное описание кристаллической решетки дается пространственной группой, параметрами элементарной ячейки, координатами атомов в ячейке. В этом смысле понятие кристаллической решетки эквивалентно понятию атомарной структуры кристалла. Русский ученый Е. С. Федоров почти на 40 лет раньше, чем были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ. Он подразделил кристаллы на 32 класса симметрии, объединяющих 230 возможных пространственных групп. Кристаллы могут различаться по двойному лучепреломлению, по пьезо- и пироэлектрическим свойствам, образованию адсорбционных центров, работе выхода электронов и т. п.  [c.11]

Фазовые переходы второго рода чаще всего связаны со скачкообразным изменением каких-либо свойств симметрии тела. Например, если в центрированной кубической решетке узлы, находящиеся в центрах ячеек, испытывают даже сколь угодно малое смещение, симметрия решетки скачкообразно изменяется. Другой пример дает нам решетка, в которой атомы определенного сорта могут занимать места двух типов — свои (для которых вероятность встретить здесь атом больше 1/2) и чужие (для которых вероятность встретить атом меньше 1/2).  [c.148]

Электронное строение и типы связей элементов периодической системы - ключ к пониманию структуры и свойств простых и сложных веществ, образованных этими элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана группа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа атомов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической структуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симметрия орбиталей атомов данного конкретного элемента полностью определяют число, длин , ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в гфостранстве, т е. кристал-лическ то структуру, основные физико-химические свойства элемента.  [c.30]


Физической причиной конкретной кристаллической структ>фы любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованию определенных межатомных связей Число, протяженность и симметрия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентировку- и энергию межатомных связей, образующихся в результате перекрытия этих орбиталей, а, следовательно, размещение атомов в пространстве, т е. кристаллическуто структуру, а также физико-химические свойства элемента.  [c.34]

Таким образом, все многообразие существующих неметаллических неорганических соединений можно представить в виде классов материалов, выделив их в зависимости от валентности атомов, входящих в химическую формулу вещества, и учгтывая при этом симметрию структур. Кроме того, при составлении группы должны рассматриваться физико-химические характеристики материалов, определяющие свойства требуемых покрытий.  [c.73]

II рода, протекающих путем небольших смещений атомов. В этом случае симметрия менее симметричной фазы, отвечающей более низкой температуре плавления, является подгруппой симметрии высокосимметричной фазы. Последняя при фазовом переходе как бы теряет часть своих элементов симметрии. Ряд примеров, свидетельствующих о связи симметрии кристалла и его свойств, будет приведен в следующих разделах книги.  [c.154]

ОДНОЙ линии должны наблюдаться три, расположенные очень близко друг от друга. Однако вырождение снято не полностью (не все корни получились ра21личными). Это связано с тем, что голе атома в однородном внешнем электрическом поле симметрично относительно отражения в плоскости, проходящей через ядро атома в направлении поля, в данном случае через ось Z. Поэтому состояния, получающиеся друг из друга посредством такого отражения, должны иметь одинаковую энергию. Таким образом, оставшееся вырождение является следствием того, что возмущение не нарушило всех свойств симметрии исходного гамильтониана.  [c.256]

Если свойства образца, вырезанного из материала, не зависят от его ориентации, материал называется изотропным. В противном случае материал называют анизотропным. В зависимости от того, какой критерий принимается при отождествлении свойств образцов, говорят о механической, оптическох , тепловой и других видах анизотропии. Кристаллы, например, всегда анизотропны, это определяется их внутренним строением, поскольку атомы в кристаллической решетке располагаются совершенно определенным образом. Зная строение кристаллической решетки, можно сделать некоторые выводы о характере анизотропии, например указать плоскости симметрии. Образцы, вырезанные из кристалла симметрично относительно такой плоскости, обнаружат тождественные свойства. Технические сплавы состоят из кристаллических зерен, ориентация которых беспорядочна и произвольна. Поэтому в теле, состоящем из большого числа таких зерен, нельзя указать какое-то предпочтительное направление, отличающееся от других. Поликристаллический металл ведет себя в среднем как изотропное тело. При этом, конечно, предполагается, что размеры образца достаточно велики и он содержит в себе достаточно много кристаллических зерен. Малые образцы, состоящие из небольшого числа зерен, будут обнаруживать разные свойства, но эта разница совершенно случайна, она зависит не от ориентации образца, а от случайных ориентаций составляющих его зерен.  [c.40]

Рентгенографические методы анализа широко используются для изучения структуры, состава и свойств различных материалов. Широкому распространению рентгенофафического анализа способствовали его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто недоступных другим методам исследований. Вследствие высокой проникающей способности рентгеновских лучей для осуществления анализа не требуется создание вакуума. С помощью рентгенографического анализа исследуют качественный и количественный состав материалов (рентгенофазовый анализ), тонкую структуру кристаллических веществ - форму, размер и тип элементарной ячейки, симметрию кристалла, координаты атомов в пространстве, степень совершенства кристаллов и наличие в них микронапряжений, наличие и величину остаточных макронапряжений в материале, размер мозаичных блоков, тип твердых растворов, текстуру веп ес1в, плотность, коэффициент термического расширения, толидину покрытий и т.д.  [c.158]

Продукты полимеризации хлорированного стирола — полидихлорстирол (получаемый из дихлорстирола — стирола с замещением двух атомов водорода двумя атомами хлора) — обладают более высокой нагревостойкостью, чем полистирол. У полидихлорстирола благодаря относительной симметрии молекул tg б" мало отличается от такового для полистирола, в то время как у сополимера с акрило-нитрилом и у ударопрочных марок он больше, особенно у последних. Ударопрочный полистирол представляет собой смесь полистирола или его сополимеров с синтетическими каучуками бутадиеновым или бутадиен-стироль-ным. Электрические свойства у эмульсионного полистирола ниже, чем у блочного, из-за остатков полярного эмульгатора. Ударопрочный полистирол имеет весьма широкое применение как конструкционный диэлектрик (аккумуляторные баки, корпуса и детали разных приборов и аппаратов). Полистирол и его сополимеры термопластичны.  [c.118]

Этой разветвленностью строения, очевидно, объясняется клеящая способность, большая эластичность полиизобутилена по сравнению с полиэтиленом. Так как звено цепи иолиизобутилена отличается от звена цепи полиэтилена замещением двух атомов водорода двумя ме-тильными группами, которые не нарушают электрической симметрии звена, то вследствие неполярности молекул величина 8 и tg6 и изменение их от частоты и температуры примерно такие же, как у полиэтилена. Полиизобутилен, таким образом, представляет собой неполярный диэлектрик с высокими электрическими свойствами. Свойства полиизобутилена приводятся в табл, 5.3.  [c.71]

Это явление обладает свойством обратимости. Переменное электромагнитное поле не остается неподвижным в пространстве, а распространяется со скоростью света V вдоль литиг, перпендикулярной векторам Е и Н, образуя электромагнитные волны, частным, случаем которых являются световые волны. Перпевдикулярные друг другу и вектору V векторы Е и Н относительно вектора V могут быть ориентированы в плоскости произвольно, т. е. луч не является осью симметрии электромагнитных волн. Такая асимметрия характерна только для поперечных волн. Следовательно, световые волны поперечны. Иллюстрацию этой асимметрии можно получить в оиыте с помощью какой-либо системы, обладающей свойством асимметрии, как, например, кристалла, атомы которого располагаются в виде пространственной решетки таким образом, что свойства кристалла по разным направлениям различны. Поставим перпендикулярно направлению рас-иростраиетшя естественного света, в котором поперечные колебания происходят во всевозможных направлениях, две пластинки из обладающего свойством анизотропии кристалла турмалина. Плоскости пластинок должны быть параллельны осям кристаллов.  [c.227]


ВЕРОЯТНОСТЬ термодинамическая характеризуется чис-ло 1 способов, которыми может быть реализовано данное состояние системы ВЗАИМОДЕЙСТВИЕ [—воздействие тел или частиц друг на друга, приводящее к изменению их движения ближнего порядка — взаимодействие между соседними частицами, составляющими вещество гравитационное — взаимодействие между любыми телами, выражающееся в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними дальнего порядка — взаимодействие между далекими частицами, составляющими вещество звеньями полимерной молекулы при случайном сближении их в процессе теплового движения) обменное — специфическое взаимное влияние одинаковых частиц, входящих в состав квантовой системы, связанное со свойствами симметрии волновой функции системы относительно перестановки координат частиц, а также приводящих к согласованному движению частиц и изменению энергии системы пондемоторное токов — механическое взаимодействие электрических токов посредством создаваемых ими магнитных полей снин-орбитальное — взаимодействие частиц, входящих в состав квантовой системы, зависящее от велггчины и взаимной ориентации их орбитального и спинового моментов импульса, а также приводящих к тонкой структуре уровней энергии системы сннн-решеточ-ное — взаимодействие орбитального магнитного момента атома с кристаллическим полем спин-спиновое — взаимодействие частиц, входящих в состав квантовой системы, обусловленное наличием у частиц собственных магнитных моментов, а также приводящих к сверхтонкой структуре уровней энергии системы электромагнитное — взаимодействие частиц, обладающих электрическим зарядом или магнитным моментом, осуществляемое посредством электромагнитного поля]  [c.226]

Геом. анализ К. с. позволил развить це.пый ряд обобщений и законов атомной структуры кристаллов— представления об атомных радиусах, о типах хим. связи в кристаллах (ионной, ковалентной, металлической, вап-дер-ваальсовой, водородной), правила плотнейшей упаковки атомов и молекул в К. с., связи К. с. со свойствами кристал.иов (сл . Кристаллохимия). Анализ К. с. и её симметрии служит отправным пунктом расчётов энергетич. спектра, псголковаиип физ. свойств кристалла (см. Кристаллофизика).  [c.503]

Физические свойства К. Все свойства К.— механические, электрические, магнитные, оптические, электро- II магнитооптические, транспортные (напр., диффузия, тепло- и электропроводность) и др.— обусловлены атомно-кристаллич, структурой, её симметрией, силами связи между атомами и энергетич. спектром электронов решётки, а нек-рые из свойств — дефектами структуры. Поляризуемость К., оп-тич. преломление и поглощепио, электро- и магиптострикция, вращение плоскости поляризации (ги-рация), пьезоэлектричество и пьезо-магнетизм, собств. проводимость характеризуются тензорами, ранг к-рых зависит от типа воздействия на К. и его отклика. Напр., напряжённость электрич. поля с компо-  [c.520]

Исследования спектральных, темп-рных и полевых зависимостей магнитооптич. анизотропии парамагршт-пых сред с локализованными магн. момеитами позволяют идентифицировать тип магнитооптич. активности, получить информацию о природе и магн. свойствах состояний, ответственных за оптич. переходы, о симметрии парамагн. центров в твёрдых телах, о характере электронно-колебательного и электронно-ядерного взаимодействия в системе (атоме, ионе) и т. д. При этом вклад парамагнитного типа несёт информацию о магн. свойствах осн. состояния системы, диамагнитного типа — и об основном, и о возбуждённом состоянии. Зависимость вапфлековского вклада от поля в малых магн. полях применяется для исследований сверхтонких взаимодействий взаимодействий кристаллич. поля, межиоиного диполь-дипольного, обменного и т. д.  [c.702]

Поверхность полупроводника. Под поверхностью П. понимают неск. атомных слоёв вблизи границы П. Она обладает свойствами, отличающимися от обьёмных. Наличие поверхности нарушает траисляц. симметрию кристалла и приводит к поверхностным состояниям для электронов, а также к особым эл.-магн. волнам (поверхяостные поляритоны), колебат. и спиновым волнам. Благодаря своей хим. активности поверхность, как правило, покрыта макроскопич. слоем посторонних ЯТО.МОВ пли молекул, адсорбируемых из окружающей среды. Эти атомы и определяют физ. свойства поверхности, маскируя состояния, присущие чистой поверхности. Развитие техники сверхвысокого вакуума позволило получать и сохранять в течение неск. часов атомарно чистую поверхность. Исследования чистой поверхности методом дифракции медленных электронов показали, что кристаллографии, плоскости могут смещаться как целое в направлении, перпендикулярном к поверхности. В зависимости от ориентации поверхности по отношению к к ристал л о-графич. осям это смещение может быть направлено внутрь П. или наружу. Кроме того, атомы приповерхностного слоя изменяют положение равновесия в плоскости, перпендикулярной поверхности, по сравнению с пу положениями в такой же плоскости, находящейся далеко от поверхности реконструкция поверхности). При этом возникают упорядоченные двумерные структуры с симметрией ниже объёмной или не полностью упорядоченные структуры. Первые являются термодинамически равновесными, и их симметрия зависит от ориентации поверхности. При изменении темп-ры могут происходить фазовые переходы, при к-рых симметрия структур изменяется (см. Поверхность).  [c.43]

Феноменологическая теория. Фазовые переходы в С,— переходы 2-го рода или 1-го рода, близкие ко второму. Для описания свойств С. в области фазовых переходов обычно используется теория Ландау, конкретизированная В. Л. Гинзбургом применительно к С. Теория исходит из факта существования фазового перехода при понижении темп-ры до Г = характерной особенностью перехода является исчезновение нек-рых элементов симметрии, связанное со смещением из симметричных положений определённых типов атомов в кристаллич. решётке. Совокупность этих смещений связана с параметром порядка ц, К-рый равен О при Т >Т . В собств. С. параметром порядка являются одна (одноосный С.) либо 2, 3 (многоосный С.) компоненты вектора поляризации Р. В одноосном собств. С. Р = ат), где а —пост, коэффициент. В несобств. С. г является многокомпонентной величиной, сиязаяной со смещенпями атомов при переходе в несимметричную фазу.  [c.477]

Лит. г и X N а в И. И., Скороход А. В., Введен в теорию случайных процессов, 2 нзд., М., 1977. Р. Л. Минлое. случайное ВЫРОЖДЕНИЕ —вырождение, не связанное со свойствами Симметрии квантовой системы и получающееся вследствие совпадения значений энергии для двух различных её квантовых состояний. Так, для сложных атомов могут случайно совпадать энергии уровней, принадлежащих разл. последовательностям электронных уровней энергии. Для колебат. состояний молекул возможны совпадении удвоенной частоты собств. колебаний с частотой др. собств. колебания, что приводит к С. в. колебат. уровней.  [c.560]

Фторопласт-3 (фторлон-3) — полимер трифторхлортилена, имеет формулу (— F — F l—) . Введение атома хлора нарушает симметрию звеньев макромолекул, материал становится полярным, диэлектрические свойства снижаются, но появляется пластичность и облегчается переработка материала в изделия. Фторопласт-3, медленно охлажденный после формования, имеет кристалличность около 80—85 %, а закаленный — 30—40 %. Интервал рабочих температур от —105 до 70 °С. При температуре 315 °С начинается термическое разрушение. Хладотекучесть у полимера проявляется слабее, чем у фторопласта-4. По химической стойкости он уступает политетрафторэтилену, но все же обладает высокой стойкостью к действию кислот, окислителей, растворов щелочей н органических растворителей.  [c.455]


Среди межкристаллитных границ выделяют низкоэнергетические, когерентные границы с периодической упорядоченной атомной струк-тл рой и особыми кинетическими, диффузионными, механическими и другими свойствами. Такие границы называют специальными. К ним относятся границы фаз в ориентированных эвтектиках, в мартенситных структурах и др. Специальные границы возникают при определенных углах разориентировки зерен (для гомофазных фаниц зерен) или при определенной взаимной ориентации фаз (для гетерофазных, межфаз-ных границ). При таких разориентировках возникают решетки совпадения и часть атомов двух решеток являются общими. Основная характеристика специальной границы - обратная плотность мест совпадения S - отношение числа общих атомов к числу всех атомов решетки 1 или решетки 2 в ячейке совпадения. Чем меньше значение Е, тем больше относительная доля общих атомов в решетке совпадения, т е. тем плотнее атомная упаковка (выше когерентность) границы, проходящей через плоскости симметрии решетки совпадения. На рис. 5.1 показано возникновение решетки совпадения с значением S=5.  [c.63]

В 1973 г. в некоторых научных журналах появился ряд статей, предсказывавших большое будуш,ее аморфным металлам. Эти статьи можно было бы объединить под таким общим заголовком Лабораторной любознательности уже достаточно . С тех пор прошло около десяти лет, а за это время аморфные металлы широко проникли во многие области науки и проявили себя как новые перспективные материалы с самыми разнообразными возможностями для практического использования. Столь быстрый прогресс — это и веление, времени, и отражение тех надежд, которые всегда связаны с появлением новых материалов, обладающих, к тому же, уникальными свойствами. До недавних пор главный девиз науки о металлах звучал как Металлы — это кристаллы , т. е. вещества, имеющие закономерно упорядоченную структуру. Поэтому не будет преувеличением сказать, что появление аморфных металлов, где расположение атомов не упорядоченно, внесло большой вклад в систему знаний о металлах вообще, существенно изменив наши представления о них. Неудивительно, что металлы, обладающие крайне беспорядочными атомными конфигурациями, разительно отличаются по своим свойствам от совершенных кристаллов, где действуют ограничения, вызванные существованием симметрии.  [c.23]

По электрическим свойствам полимеры делятся на полярные и неполярные. Полярность определяется наличием диполей и отсутствием симметрии в их строении. В неполярньгх полимерах дипольные моменты связей атомов скомпенсированы, поэтому они являются высококачественными диэлектриками.  [c.61]

Наименьшая часть пространственной решетки, которой присущи все свойства симметрии решетки в целом, называется элементарной ячейкой. Если эта ячейка является кубом, то и соответствующая ей решетка будет кубической. Простой кубической решеткой называется такая решетка, у которой атомами или ионами заняты лишь вершины ее элементарных ячеек. Такой тип решетки имеют, например, кристаллы поваренной соли Na l.  [c.22]

Наиболее изучена структура, свойства и технология получения фулле-рена С о, который состоит из 20 шестиугольников и 12 пятиугольников. Атомы углерода в вершинах многоугольников соединены ковалентными Sp - гибридными связями. Каждый атом связан в молекуле с тремя соседними атомами одной короткой (0,139 нм) и двумя длинными (0,1493 нм) связями. Фуллерен обладает оксаэдрической симметрией.  [c.108]


Смотреть страницы где упоминается термин Симметрии свойства атома : [c.748]    [c.307]    [c.10]    [c.97]    [c.785]    [c.290]    [c.265]    [c.256]    [c.291]    [c.504]    [c.506]    [c.579]    [c.659]    [c.307]    [c.310]    [c.445]    [c.228]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.11 , c.13 , c.21 ]



ПОИСК



SU (3)-Симметрия

Мир атома

Симметрия, свойства



© 2025 Mash-xxl.info Реклама на сайте