Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устройство поступательного движения

На рис. 191, д показана схема устройства 1 для протягивания винтовых шлицев, когда протяжка 9 имеет только поступательное движение, а обрабатываемая деталь 10 — вращательное. Поступательно движущийся суппорт 2 станка через планку 5 тянет за собой трос 4, накрученный на барабан 5 с грузом б. Барабан, вращаясь, передает вращение коническим зубчатым колесам 7 н 8, а колесо 8 одновременно вращает деталь 10, закрепленную в нем.  [c.347]


Способ транспортирования деталей в автоматических линиях зависит от конструкции и размеров деталей, характера применяемого оборудования и методов обработки. В автоматических линиях, состоящих из агрегатных станков, для транспортирования чаще всего применяется шаговый транспортер, совершающий возвратно-поступательное движение. Для транспортирования деталей в линиях, состоящих из универсальных и специализированных станков, применяются различные транспортные устройства транспортеры (для деталей  [c.460]

Зубчатые передачи — наиболее распространенный тип механических передач в приборах, во внешних устройствах ЭВМ I автоматических системах. Их используют для преобразования вращательного движения входного (ведущего) звена во вращательное или поступательное движение выходного (ведомого)  [c.177]

Механизмы прерывистого действия служат для преобразования вращательного движения во вращательное или поступательное движение, с периодическими остановками определенной продолжительности. Наибольшее распространение, особенно в автоматических устройствах, имеют механизмы мальтийские храповые  [c.279]

Эти механизмы позволяют преобразовывать вращательное или винтовое движение ведущего звена в медленное прямолинейно-поступательное движение ведомого звена с большим выигрышем силы Домкраты, прессы, зажимные устройства) или с точным отсчетом пройденного пути (измерительные приборы, станки).  [c.51]

На рис. 190, а изображена схема устройства машины-двигателя (двигателя внутреннего сгорания), в которой химическая энергия топлива превраш,ается в цилиндре в тепловую, затем тепловая энергия превращается в механическую энергию в форме поступательного движения поршня и, наконец, последняя превращается в механическую в форме вращательного движения коленчатого вала, т. е. в энергию, удобную для использования в самых различных целях.  [c.184]

Таким образом, в машинах и механизмах часто необходимо производить преобразование вращательного движения в поступательное или возвратно-поступательное, и наоборот. В сложных машинах имеются механизмы для получения не только указанных двух движений, но и других криволинейных движений. В двигателе внутреннего сгорания возвратно-поступательное движение совершают поршень, впускной, выпускной и пусковой клапаны, плунжеры топливных насосов, а также некоторые детали реверсивных устройств и регуляторов. Во вращательном движении участвуют коленчатый и распределительный валы, зубчатые колеса приводов, роторы нагнетателей и некоторые другие детали.  [c.185]


В [9] приведено описание устройства, разработанного В.Яну-шем (рис. 19). Оно предназначено для определения относительного отклонения ширины колеи путем механической записи боковых перемещений крана по рельсам. Два таких устройства укрепляются на противоположных концах крана. Ролик 3 при движении крана передает вращательный момент на барабан 4, а изменения ширины колеи и поперечные перемещения крана по рельсам вызывают поступательные движения барабана вдоль направляющей 1 В результате этого одно пишущее приспособление 5, закрепленное на раме барабана, вычерчивает на нем базовую прямую, а другое, связанное с мостом крана, выч чивает кривую. Так как поперечные перемещения крана вызывают перемещение обоих роликов 3 на одинаковую величину, но в -различных направлениях, то величина относительного отклонения ширины колеи будет равна алгебраической сумме соответствующих отрезков между опорной и кривой линиями на графиках.  [c.40]

Напомним известное из теоретической механики понятие шарнира как устройства, соединяющего два или более стержня так, что исключено взаимное поступательное движение, но возможно вращательное, рис. 1.2, а.  [c.13]

Каретка с зондирующим устройством совершает возвратно-поступательное движение вдоль образующей трубы на участке длиной 800 мм, а развертка поля зрения достигается за счет вращения трубы. Площадь поля зрения 800 X 560 мм. Шаг развертки 1—5 мм.  [c.241]

Испытание покрытий на задирание проводили на стенде Центрального конструкторского бюро арматуростроения при возвратно-поступательном движении. Специальные образцы (см. рисунок) устанавливались в опорные гнезда с шаровыми подушками. Возвратно-поступательное движение нижнего образца (при неподвижном верхнем) осуществлялось электроприводом со скоростью 0.25 м/мин. при ходе 10 мм и остановке после каждого хода на 5 сек. в одну сторону и на 15 сек. при возврате в другую сторону. Число ходов замеряли электрическим счетчиком. Нагрузочное устройство машины позволяло создавать удельную нагрузку на испытуемых образцах от 0 до 125 кгс/см . Измерение нагрузки на образцы производилось манометром с точностью до 0.1 кгс/см . Нагрев образцов до требуемой температуры производился в специальной  [c.268]

В низкочастотном пульсаторе с механическим приводом (рис. 135) [50] образец I нагружается с помощью вибратора 2, приводимого в действие электродвигателем постоянного тока. Максимальная нагрузка цикла регулируется подбором числа оборотов двигателя. Изменение напряжения в каждом цикле задается перемещением подвижной массы вибратора. Величина предельного напряжения цикла контролируется по показаниям упругого динамометра 3, жестко соединенного с одной стороны с образцом /, а с другой — с вибратором 2. Для испытаний с низкой частотой нагружения имеется отдельный реверсивный двигатель, приводящий в движение червячную пару 4, которая в свою очередь сообщает поступательное движение шпинделю 5 пульсатора. Заданный цикл нагрузки выполняется при помощи следящего устройства 6. Созданы пульсаторы с механическим приводом двух типов с предельными усилиями 0,03 кН ( 3 тс) и 0,1 кН ( 10 тс).  [c.244]

Поперечное сечение транспортного средства, использующего воздушную подушку, изображено на рис. 11.11. Существуют и другие конструкции, отличающиеся от показанной на этом рисунке конфигурации путевого устройства. Воздух под давлением продувается через каналы в корпусе вагона и попадает в воздушную подушку в направляющем пути. Давление воздуха уравновешивает массу вагона, а поступательное движение может осуществляться с помощью различных технических средств ракетных ускорителей, пропеллеров, линейных индуктивных двигателей. Основными недостатками такой системы являются необходимость и.меть вторичное подвесное устройство для демпфирования колебании поезда на неровностях направляющего пути в местах износа и разрыва стыков, которые неизбежно образуются проблемы, связанные с образующимися воздушными потоками некоторая нестабильность движения на больших скоростях, высокие требования к качеству путевого устройства. В Англии, Франции и США исследования по созданию транспортных средств на воздушных подушках начались примерно одновременно. Было построено несколько опытных участков. Но вскоре пришли к заключению, что эта подвесная система имеет свои ограничения, и исследования приняли другие направления.  [c.274]


На повестку дня встал вопрос о непрерывном 100%-ном контроле в потоке производства с автоматической индикацией и регистрацией результатов, а в отдельных случаях и с обратной связью, т. е. автоматической регулировкой технологического процесса производства, обеспечивающей выход только качественной продукции. Трудности, которые возникают при разработке средств контроля, заключаются в том, что контролируемый материал находится в непрерывном поступательном движении, при этом скорость движения его может изменяться в широких пределах (О—25 м/с). Если учесть, что, кроме поступательного движения, листовой прокат совершает еще и вибрационные колебания в вертикальном направлении, становится понятной вся сложность создания действующих устройств контроля как в теоретическом плане (взаимодействие движущегося ферромагнетика с электромагнитным полем), так и в практическом (необходимость бесконтактных средств электромагнитного воздействия на испытуемый материал и считывания его результатов). При разработке приходится также учитывать, что выпускаемый металлургической промышленностью листовой прокат весьма разнообразен по химическому составу, технологии изготовления, сортаменту.  [c.58]

В устройствах для тепловой микроскопии необходимо, чтобы элементы механизмов приборов имели возможность перемещаться и вращаться в вакууме без нарушения герметичности. В зависимости от технических требований (скорости вращения, величины хода при возвратно-поступательном движении, значения переда-  [c.63]

Рычажное (механическое) управление тормозами, осуществляемое посредством системы тяг, шарниров и рычагов, находит широкое применение в ряде машин, особенно в тех случаях, когда тормозное устройство располагается вблизи места управления. На фиг. 90 показана схема управления тормозом механизма поворота портального крана завода ПТО им. С. М. Кирова. Тормозная педаль 1, находящаяся у рабочего места крановщика, соединена с рычажной системой тормоза 7 промежуточной горизонтальной тягой 5. Эта тяга, имеющая большую длину, поддерживается промежуточными роликовыми опорами 6, обеспечивающими ее свободное поступательное движение. Для того чтобы крановщик даже при резком нажатии на педаль 1 не мог создать излишне резкого торможения, применен специальный воздушный замедлитель 2, обеспечивающий развитие полного тормозного момента не быстрее, чем за 3—4 сек. Замедлитель (отдельно показанный на фиг. 91) представляет собой вертикальный цилиндр, поршень 8 которого соединен посредством тяги 4 с рычагом 3 системы управления При нажиме на педаль этот рычаг заставляет поршень перемещаться кверху и вытеснять воздух из верхней полости цилиндра через отверстие 9. Соответствующим регулированием  [c.139]

Электромагниты серии КМТ, так же как и магниты постоянного тока серий КМП и ВМ, применяются в качестве привода различных тормозных устройств, а также в различных механизмах, требующих поступательного движения при значительном усилии.  [c.413]

На рис. 65 показан однороликовый раскатник. Отличаясь простотой устройства, он позволяет получать поверхности 9—И-го класса шероховатости. Рабочим элементом в данном раскатнике является ролик 5, устанавливаемый под углом а к оси оправки / во втулке 2 или на игольчатых подшипниках. Штуцер 4 служит для подвода в зону обработки масла. Специальный винт (на рисунке не показан) удерживает ролик от осевого перемещения. Если оправке сообщить вращательное и поступательное движения, то ролик за счет трения его рабочих кромок об обрабатываемую поверхность начнет вращаться. То же самое будет наблюдаться, если вращение получит заготовка, а раскатник будет совершать только осевое перемещение. Диаметр и длина ролика выполняются строго определенными, чтобы обеспечить требуемый натяг. При этом учитываются радиус деформирующей кромки ролика, угол установки ролика относительно оси и диаметр отверстия.  [c.126]

При выборе типа загрузочного устройства прежде всего надо решить вопросы правильной взаимной ориентации отдельных деталей и собираемых узлов. При этом требуемую ориентацию деталей и узлов необходимо сохранять неизменной, отступая от данного общего правила только там, где это вызывает значительное усложнение конструкции. Загрузочные устройства для деталей, не требующих ориентации, выполняются в виде бункеров с вращательным или возвратно-поступательным движением питающей трубки. Бункерные загрузочные устройства для деталей более сложной конфигурации — особенно, если требуется ориентация более чем в одном направлении (например, ступенчатый валик, который должен быть ориентирован не только по диаметру, но и направлен при его установке определенным концом) — требуют применения хорошо продуманных захватно-ориентирующих устройств.  [c.169]

Кривошип 1, вращающийся вокруг неподвижной оси В, входит во вращательную пару с ползуном 7, скользящим в кулисе 2, вращающейся вокруг неподвижной оси А. В кулисе 2 скользит ползун 3, установленный в требуемом положении с помощью винтового устройства. 8. Шатун 4 входит во вращательные пары D и С с ползунами 3 и 5. Ползун 5 скользит в неподвижных направляющих а—а. При вращении кривошипа / кулиса 2 вращается вокруг оси Л. Ползун 6 совершает возвратно-поступательное движение в направляющих станины 5. Ползун S, жестко соединенный с кулисой 2, служит для регулировки хода точки С,  [c.423]

Пневматические устройства для преобразования механической работы в потенциальную энергию воздуха, выполненные в виде компрессоров и вакуум-насосов, нашли в пневматических системах преимущественное распространение по сравнению с вентиляторами, воздуходувками и центробежными насосами, способными сообщить воздуху лишь большие скорости при сравнительно малом давлении. Компрессоры и вакуум-насосы отличаются компактностью, простотой обслуживания и легкостью регулировки. Они изготавливаются двух основных типов поршневые с возвратно-поступательным движением поршней и ротационные с вращательным движением ротора. Каждый из этих типов представлен многими конструкциями. Некоторые из них являются удачным сочетанием поршневого и ротационного типа — это так называемые ротационно-поршневые насосы. Наряду с перечисленными встречаются насосы шестеренчатого типа, мембранные и др.  [c.169]


Вслед за возмущением, создаваемым упругой волной, начинается процесс течения жидкости через щель, образуемую краном. Если распространение упругой волны характеризуется колебательным движением жидкости, то процесс течения представляет собой поступательное движение ламинарного или турбулентного вида. Скорость течения и, следовательно, расход жидкости будут определяться разностью давлений, установившихся перед распределительным устройством и в цилиндре под поршнем размерами щели, через которую происходит наполнение плотностью жидкости и коэффициентом расхода жидкости, учитывающим гидравлические потери. Разность давлений определяется, в свою очередь, гидравлическими потерями, вызванными местными сопротивлениями и трением по всей длине трубопровода. Следует заметить, что с поворотом крана или перемещением золотника размеры щели будут изменяться и соответственно будут изменяться расход и местные сопротивления, а следовательно, и гидравлические потери.  [c.206]

Во всех рассмотренных выше прямолинейно-направляюш,их устройствах поступательные движения ведомых звеньев осуш,ествля-лись либо перпендикулярно, либо параллельно линии стойки. При этом ось поступательно перемещаюш,егося звена и линия стойки были всегда параллельны. В механизме, показанном на рис. 15, соблюдено только это последнее условие, между тем как поступательные перемеш,ения ведомого звена происходят под некоторым постоянным углом ф к линии стойки, зависящим от угла сгиба шатуна 8.  [c.41]

Сущность хонингования (хонинг-процесса) заключается в механической доводке предварительно развернутого, расшлифованного или расточенного отверстия специальной вращающейся головкой (хоном) с шестью (иногда и более) абразивными раздвижными брусками, имеющей, кроме того, возвратно-поступательное движение. Раздвижение абразивных брусков в радиальном направлении осуществляется механическим, гидравлическим или пневматическим устройством.  [c.226]

Для передачи деталей или узлов е одной позиции на другую п поточной, а тем более в автоматической линии широко используют шаговые конвейеры. В конвейерах этого типа детали или узлы иа размер шага перемещают устройства, совершаюихие поступательное или возвратно-поступательное движение (сцеп тележек, штанга или рамка). Движение задается либо гибким тяговым элементом с приводом от электромотора, либо силовым цилиндром (гидравлическим, пневматическим), либо от электромотора через передачу шестерня — рейка.  [c.24]

При использовании сцепа тележек движение осуществляют с периодическими остановками. При транепортировапии крупных изделий тележки, обычно совершающие возвратно-поступательное движение, снабжают подъемными устройствами, причем возвратный ход совершается, когда они опущены. На рис. 2.19 показана схема такого конвейера в линии сборки и сварки тенло-1303ПЫХ рам. Все тележки связаны с тяговым канатом 5. На иерпое  [c.24]

При необходимости вращения детали относительно вертикальной осп (круговые, кольцевые угловые швы) используют поворотный стол для установки и съема деталей и их вращения относительно неподвижной сварочной головки. Примером такого станка для сварки круговых швов детали малого размера (рис. 10.31) является полуавтомат, обеспечивающий одновременную сварку двух разных швов на позициях IV и VI поворотного стола (рис. 10.32, а). Периодический поворот планшайбы стола на 1/8 оборота осуществляется мальтийским механизмом. Привод вращения деталей на сварочных позициях /V п VI достигается прижатием к каждой из них подпружиненных поверхностей постоянно вращающихся шпинделе (рис. 10.32, б). Частота вращения подбирается с помощью сменных шестерен, длительность цикла сварки составляет 14... 17 с. Привод движения всех механизмов станка (рис, 10,33) осуществляется от одного непрерывно работаюп его электродвигателя /. Цикл задается включением электромагнита 3, освобождающего подпружиненную головку муфты 2. За время одного оборота кулачка 4 узел 6, несущий шпиндельные устройства 7 с их приводом 5 и две сварочные головки, совершает возвратно-поступательное движение в вертикальной плоскости. При этом свариваемые детали освобождаются от  [c.374]

В двигателях внутреннего сгорания и паровых машинах для преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение вала применяется кривошииио-шатуиный механизм. Его простейшее устройство следующее кривошип ОА может вращаться вокруг неподвижной точки О и шарнирно скреплен с шатуном АВ, передающим движение ползууу В, движущемуся в направляющих, расположенных вдоль горизонтальной оси (рис. 1.1.1).  [c.301]

Внедрение длниноходового режима откачки насосов с механическим приводом влечет за собой значительное увеличение габаритных размеров и массы станков-качалок по сравнению с гидроприводным устройством насоса. Последнее, кроме того, обеспечивает плавный реверс возвратно-поступательного движения плунжера и постоянного натяжения насосных штанг, что также способствует повышению срока службы оборудования.  [c.166]

Направляющие с трением скольжения наиболее распространены и применяются в различных механизмах, где имеются поступательно перемещающиеся звенья игловодители швейных машин, каретки пишущих машин, шпиндели сверлильных станков и др. На рис. 231, а показано устройство цилиндрических направляющих, а на рис. 231, б—призматических направляющих. Направляющие поступательного движения должны иметь устройство, предохраняющее звенья механизмов от проворачивания.  [c.265]

Объекты, захватываемые промышленными роботами, отличаются по форме, массе, прочности и шероховатости поверхности. В связи с этим захватные устройства современных роботов весьма разнообразны как по конструкции, так и по принципу действия. Рассмотрим некоторые схемы механических схватов, предназначенных для захвата, удержания и отпуска предметов с помощью специальных механизмов. На рис. 7.1, а показана кинематическая схема схвата промышленного робота с рычажно-кулисньни приводом, в котором при относительном поступательном движении обоймы 1 по штоку 2 поводки 3 и 4 вращают рычаги 5 и 6 с губками 7 и 8 относительно точек А и В. При этом изменяется рас-  [c.121]

В приборах (например, лентопротягивающих устройствах), транспортных машинах и др. используют механизмы (рис. 19.1, г), преобразующие вращательное движение ведущего звена-катка 1 в поступательное движение ведомого звена J. Прижатие к ведущему звену ведомого может осуществляться силой тяжести последнего или, например, с помощью свободно вращающегося катка 2.  [c.310]

Зондирующее устройство укреплено на каретке 8, возвратно-поступательное движение которой вдоль направляющих 9 осуществляется электродвигателем 10 через систему передачи. Он же обеспечивает поперечный шаг подачи через ходовые винты 11. После окончания обзора выключаются концевые выключатели 12, останавливающие двигатель. Блок индикации собран на основе электронно-лучевой трубки с памятью (16ЛМ1Г).  [c.241]

Установка, схема которой приводится на рис. 6.24, дает возможность моделировать реальные условия работы передней части (носика) прокладчика утка при полете и соударении его с контртелом. Вращение от электродвигателя 9 передается на дисковый кулачок 10, который через ролик 7 и палец 6 отводит влево боек 8. Боек передает поступательное движение ударнику 4, вследствие чего сжимается прунигна 3, которая опирается на регулировочное устройство 1, 2. В момент, когда ролик и кулачок контактируют в точке а, осуществляется окончательное поджатие пружины, определяющее энергию удара. При сбегании ролика с выступа кулачка пружина отдает запасенную энергию бойку 8 через ударник 4. Ударник 4 задерживается неподвижной опорой 5, и боек самостоятельно продолжает полет, в результате чего происходит соударение образца 11, закрепленного в бойке, с контртелом 12, Полусферический образец и плоское  [c.123]


Создана машина для контактнотусталостных испытаний при возвратно-поступательном движении образцов, нагружаемых роликовым устройством.  [c.277]

Рнс. 122. Узел устройства для механохими-ческой обработки внутренней поверхности трубопровода с поступательным движением инструмента  [c.260]

Автоматизация контроля происходит путем последовательного подведения участков обследуемого изделия к излучателю при помощи механических сканирующих устройств. Механическое сканирование осуществляется за счет возвратно-поступательного движения и построчного сдвига обследуемого изделия или аналогичного перемещения приемоизлучающей системы. Выбор схемы сканирования зависит от формы и вида обследуемого изделия. В случае фиксации дефектограмм на фотопленку или фотобумагу в качестве оконечного каскада фиксирующего устройства используется усилитель постоянного тока. Нагрузкой оконечного каскада служит точечная газосветная лампа, интенсивность свечения которой меняется пропорционально амплитуде принятого сигнала. Полученная таким образом фотография показывает распределение интенсивности энергии микрорадиоволн за контролируемым изделием, по ней можно судить о качестве изделия.  [c.135]

Резиновые манжеты предназначены для уплотнения цилиндров п штоков гидравлических устройств, работающих нри давлении до 100 кгс/см , а с при-мснеппем защитных колец — при давлении до 500 кгс/см-, со скоростью возвратно-поступательного движения до 0,5 м/с в среде минеральных масел и водиых емульсий.  [c.198]

Звено 5 входит во вращательные пары Е п F с толкателем J2 и звеном 6, вращающимся вокруг неподвижной оси Р. Зубчатый сектор 7 жестко связан со звеном 6 и входит в зацепление с равным зубчатым сектором 8, вращающимся вокруг неподвижной оси Q. При вращении кулачка 1 каретка 2 приводится в возвратно-поступательное движение. В течение рабочего хода каретка 2 захватывает нижнее поршневое кольцо а нз магазина Ь и перемещает его под электрические контрольные измерители 4. Подъем и опускание стержней d этих измерителей осуществляется посредством рычагов п, жестко связанных с секторами 7 и 8. При повторении цикла очередное кольцо, перемещаясь, выталкивает с измерительной позиции измеренное кольцо и занимает его место, В зависимости от высоты кольца электрические контрольные измерители посылают сигнал в устройства, которые поворачивают лоток 9 вокруг неподвижной оси L, направляя кольцо в соответствующую секщио сортировочного приемника 10.  [c.218]


Смотреть страницы где упоминается термин Устройство поступательного движения : [c.129]    [c.293]    [c.160]    [c.260]    [c.93]    [c.259]    [c.275]    [c.277]    [c.184]    [c.121]    [c.240]    [c.462]   
Расчет пневмоприводов (1975) -- [ c.13 ]



ПОИСК



Движение поступательное

Уплотняющие устройства для деталей с возвратно-поступательным движение



© 2025 Mash-xxl.info Реклама на сайте