Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород теплопроводность газа

НЫХ лодок ВМС США. Газоанализатор этого типа оборудован пятью аналитическими каналами для замера содержания кислорода, углекислого газа, окиси углерода, водорода и фреона. Замер содержания кислорода осуществляется на основании использования его парамагнитных свойств водородный канал работает на использовании свойств теплопроводности, а три других канала —на Принципе использования свойств поглощения инфракрасных лучей. Кроме того, были также внесены некоторые мелкие изменения, облегчающие обслуживание газоанализатора. Размеры аппарата Мк-И1 —  [c.313]


Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]

Характеристика угольной кислоты как газового теплоносителя. Выбор газа, пригодного для охлаждения реактора, ограничен многими факторами. Воздух для этой цели не пригоден вследствие плохой теплопроводности и большой радиоактивности (при высоких температурах) содержащихся в нем кислорода и азота. Использование водорода выгодно в виду его хороших ядерных и тепловых свойств, но связано со значительным риском образования гремучих газов, трудным уплотнением контура и агрессивностью к металлам при высоких давлениях и температурах. Гелий обладает хорошими тепловыми и отличными ядерными свойствами, химически инертен, но имеет повышенную способность к потерям через уплотнения контура, малодоступен и дорог. Остальные инертные газы не пригодны для этой цели в связи с большим сечением поглощения тепловых нейтронов или же значительной наведенной активностью. Использовать азот также не рекомендуется вследствие большого сечения поглощения тепловых нейтронов и большой радиоактивности (возникновение азота С ). Наиболее целесообразно в качестве газового теплоносителя пользоваться угольной кислотой, которая в меньшей степени, чем другие газы, обладает отмеченными выше недостатками, В первом контуре угольная кислота обычно имеет температуру 100°—500° С и давление 7—65 ат — в зависимости от типа реактора. Примерно  [c.24]


Напряжение сжатой дуги существенно зависит от рода плазмообразующего газа. Это обусловлено различной способностью газов поглощать энергию при высокой температуре дуги. Более высокое напряжение имеет дуга, горящая в газе, имеющем большую теплоемкость и теплопроводность. В качестве плазмообразующих газов используют аргон, гелий, углекислый газ, воздух, кислород, азот, водород и смеси газов. При сварке в большинстве случаев используют аргон. Он имеет хорошие защитные свойства и обеспечивает высокую стойкость электрода. Теплоемкость и теплопроводность аргона низкие, поэтому дуга в нем имеет самое низкое напряжение, что удобно при ручной сварке.  [c.225]

Наиболее нагруженными элементами криогенной техники являются сосуды давления, работающие при температурах t от комнатных до низких (-200 °С) и сверхнизких (-270 °С). Сосуды для производства, хранения и транспортировки сжиженных газов объемом от сотен литров (жидкий гелий, водород) до нескольких тысяч куб.м (жидкий азот, кислород), изготавливаются из высоколегированных пластичных сталей с содержанием никеля 8-10% и более, никелевых сплавов или чисто-гр никеля, меди, медных и алюминиевых сплавов. Применение цветных сплавов при этом связано с необходимостью снижения температурных напряжений за счет высокой теплопроводности и отражающей способности. Снижение концентрации напряжений до величин = 1,2-2 в этих сосудах достигается применением отбортованных патрубков, сферических и эллиптических днищ, стыковых швов, а снижение дефектности сварных швов -разработкой специальной технологии сварки и соответствующим дефектоскопическим контролем (в том числе вакуумированием).  [c.74]

При измерении термопреобразователями температур незагрязненных продуктов горения, горячего воздуха, кислорода и других чистых газов возможны погрешности, обусловленные передачей тепла к термоприемнику или от него за счет излучения отводом тепла от термоприемника путем теплопроводности превращением кинетической энергии в тепловую вследствие торможения потока термоприемником (скоростная погрешность).  [c.204]

Титан и сплавы на его основе — сравнительно новый конструкционный материал, имеющий большое будущее благодаря высокой удельной прочности в интервале 450—500 °С и хорошую коррозионную стойкость во многих средах. По прочности и коррозионной стойкости этот материал в ряде случаев превосходит нержавеющую сталь. Титан — серебристо-белый легкий металл с плотностью 4,5 г/см (плотность на 40 % меньше стали и только на 70 % больше алюминия) и температурой плавления 1650—1670°С. Свойства титана и его высокая температура плавления требуют при сварке концентрированного источника теплоты. Однако более низкий коэффициент теплопроводности и более высокое электрическое сопротивление создают условия для потребления меньшего количества электроэнергии по сравнению со сваркой стали и, особенно, алюминия. Титан практически не магнитен, поэтому при сварке заметно уменьшается магнитное дутье. Главным отрицательным свойством титана является его способность активно взаимодействовать с газами при повышенных температурах. При комнатной температуре титан весьма устойчив против окисления, но при высокой температуре он легко растворяет кислород, что приводит к резкому повышению прочности и снижению пластичности. Содержание кислорода в титановых сплавах, используемых для сварных конструкций, должно быть не более 0,15%. По эффективности воздействия на тнтан азот является более энергичным элементом, чем кислород и резко повышает его прочностные свойства, понижая пластические. Максимально допустимое содержание  [c.15]

Ряд особенностей меди и ее сплавов создают суще-ственные затруднения при сварке. Легкая окисляемость меди в расплавленном состоянии снижает стойкость металла шва против образования кристаллизационных трещин. В меди, предназначенной для изготовления сварных конструкций, содержание кислорода не должно превышать 0,03%, а для ответственных изделий — 0,01 7о- Высокая теплопроводность меди (почти в 6 раз больше, чем у стали) требует использования концентрированных источников нагрева, а в ряде случаев предварительного и сопутствующего подогрева. Большая растворимость водорода в расплавленной меди и ее падение при кристаллизации вызывают образование пор. Часть растворенного в расплавленном металле водорода, взаимодействуя с окислом меди, образуют водяной пар и углекислый газ, которые при охлаждении металла не успевают выделиться, в результате чего появляются поры. При затвердевании медн пары воды увеличиваются в объеме, образуя в ней трещины. Та-  [c.17]


При использовании водорода для охлаждения крупных электрических машин снижаются потери мощности на трение ротора о газ и на вентиляцию, эти потери приблизительно пропорциональны плотности газа. Далее, значительно улучшается охлаждение машины за счет весьма большой теплопроводности водорода, а также повышенного коэффициента теплоотдачи водород. Вследствие отсутствия окисляющего действия кислорода воздуха замедляется тепловое старение органической изоляции обмоток и устраняет-36  [c.36]

Алюминий, магний и их сплавы легко окисляются, имеют высокую теплопроводность и сравнительно низкую температуру плавления образующиеся окислы тугоплавки. Защита расплавленного металла от действия воздуха и растворения окислов осуществляется применением специального флюса или обмазки. Сварка производится угольным или металлическим электродом. Алюминий и его сплавы хорошо свариваются проволокой с примесью до 5% кремния. Сварка магния и его сплавов производится присадочным материалом того же состава, что и основной материал. Вследствие большого сродства магния -к кислороду, для получения качественного шва лучше вести сварку в. атмосфере нейтрального газа — аргона — без применения флюса.  [c.308]

Теплопроводность веществ в жидком состоянии изменяется также в широких пределах. Так, например, теплопроводность сжиженных газов (азот, кислород) при атмосферном давлении может составлять несколько сотых долей вт/ м-град). Теплопроводность расплавленных металлов обычно достигает десятков вт/ м-град) и отличается от теплопроводности сжиженных газов на 3—4 порядка. Теплопроводность неметаллических жидких веществ в нормальных условиях колеблется в пределах от 0,09 (бромбензол, изооктан) до 0,6 (вода) вт/ м-град).  [c.189]

Медный блок представляет собой цилиндр диаметром около 70 мм и высотой 180 мм. Восемь гильз для термометров, расположенных в сверлениях медного блока, выполнены из тонких медно-никелевых трубок с небольшой теплопроводностью. Гильзы от блока ведут через область жидкого азота наружу в область с температурой, близкой к комнатной. Выше медного блока установлено два тепловых экрана, припаянных к гильзам. В тепловом контакте с этими экранами находятся медные экраны, расположенные вокруг медного блока. Эти экраны окружены латунной оболочкой, помещенной в ванну жидкого азота, точка кипения которого примерно на 13° ниже точки кипения кислорода. Латунная оболочка откачивается для исключения передачи тепла через газ от медного блока к окружающим экранам. Тепловые экраны нагреваются электрически и поддерживаются при температуре, близкой к температуре медного блока. Они обеспечивают настолько совершенную тепловую изоляцию блока, что в нем вблизи чувствительных элементов термометров колебания температуры не превышают 0,001°. Система трубок в приборе смонтирована так, что жидкий азот, предназначенный для начального охлаждения блока и экранов, может поступать из ванны через вентиль, расположенный выше оболочки. Испарение и последующее нагревание азота дают воз-  [c.134]

Диаметры защитных оболочек термометров, которые должны градуироваться в этом приборе, различны, поэтому и гильзы были изготовлены различных диаметров — от 7,5 до 13 мм. Длина гильз составляла около 41 см, что обеспечивало достаточное погружение большинства термометров, но такие гильзы оказываются слишком длинными для некоторых специальных термометров, имеющих короткую защитную оболочку. Так как точка кипения кислорода ниже точек кипения некоторых газов, например углекислого газа и водяных паров, которые в небольших количествах присутствуют в воздухе, то желательно избежать присутствия этих газов в гильзах. Это достигается уплотнением термометров в верхней части гильз с помощью резиновых втулок, откачкой воздуха и заполнением гильз сухим гелием. Использование гелия в гильзах имеет то добавочное преимущество, что гелий обладает большей теплопроводностью, чем воздух, вследствие чего улучшается тепловой контакт гильзы с оболочкой термометра.  [c.136]

Чтобы определить параметры плазмы, представляющей собой высокотемпературную равновесно реагирующую газовую смесь, прежде всего необходимо найти ее состав. Очевидно, что точность расчета состава будет определяться не только погрешностью вычислительного процесса, но в первую очередь — полнотой учета физических и химических эффектов, имеющих место в реагирующей смеси. Однако полный учет этих явлений затруднен. В то же время для получения результатов с достаточной для инженерных расчетов точностью можно принять следующие допущения в реакции горения участвует все топливо воздух состоит только из азота и кислорода смесь газов, составляющих продукты сгорания, является идеальным газом в исследуемом диапазоне температур и давлений полностью отсутствует термическая ионизация газовых компонент рассматривается однокомпонентпая легкоионизируемая присадка ее влияние на термодинамические параметры газовой смеси учитывается в приближенной форме введением соответствующих поправочных коэффициентов влияние присадки на вязкость и теплопроводность не учитывается а электропроводность рассчитывается методом малых возмущений.  [c.109]

Воздух, азот, кислород, углекислый газ, аргон, водород, гелий, другие газы используют при температуре от-256 до +1000 °С, в том числе под давлением, в криогенных установках, процессах термической и термовлажностной обработки материалов, в установках пиролиза и др. Свойства газов см. в табл. 2.15 (СО2), 2.16 (N2), 3.2 (теплопроводность газов и паров) книги 2 настоящей серии, а также в [8].  [c.168]

Из известных способов периодического определения концентрации кислорода в водороде и водородсодержащих атмосферах на отечественных заводах распространен метод Мугдана, основанный на реакции окисления аммиачных соединений одновалентной меди кислородом, находящимся в анализируемом газе. При окислении образуются соединения двухвалентной меди, которые окрашивают раствор в синий цвет. При сравнении полученной окраски с окраской стандартных растворов, содержащих аммиак и различные количества раствора Си304, определяется концентрация кислорода в исследуемой атмосфере. Имеются и другие газоанализаторы. Прибор ТП-5101М основан на принципе измерения теплопроводности анализируемого газа. Чувствительный элемент газоанализатора — нагревательный элемент из платиновой нити — непрерывно омывается водородом, например отходящим с электролизной установки. При изменении теплопроводности газа, зависящей от содержания в нем кислорода, меняется теплоотдача нити и, следовательно, ее температура и электрическое сопротивление. Величина электрического сопротивления определяет концентрацию кислорода в водороде.  [c.328]


Для определения горючих газов в. продуктах- неполного горения обычно используют термохимические детекторы с газом-носителем— воздухом. Возникновение тока в измерительной диагонали моста наблюдается также и тогда, когда в рабочую камеру детектора попадает и негорючий газ, теплопроводность которого отличается рт теплопроводности газа-носителя. При использовании детектора-с платиновой нитью температура чувствительного элемента поддерживается в пределах 700—800°С. Как показывают зависимости, приведенные на рис. 11-13, при этой рабочей температуре коэффициент теплопроводности кислорода Яоа превышает значение ко-эф фициента теплопроводности воздуха возд, в ТО время ка.к теплопроводность азота меньше Явозд. В. связи с этим в тех случаях, когда в анализируемой пробе имеются N 2 и Ог в том же объемном, соотношении, что в газе носителе (воздухе), т. е. N2/02= ,76, прибор никак не реагирует на их. присутствие. Если же указанное соотношение меняется  [c.217]

При низких температурах были измерены теплопроводности следующих ожижепных газов жидкого аргона и азота Улиром [54], жидкого кислорода в узком температурном интервале Просадом [55] и жидкого Не 1 Гренье [56] и Бауэрсом [57]. Определение теплопроводности жидкого Не II между 0,6°К и Х-точкой определяется циркуляцией сверхтекучей и нормальной компонент и представляет собой отдельную задачу (см. гл. X).  [c.256]

Значительный интерес для электротехники представляет водород. Это очень легкий газ, обладающий весьма благоприятными свойствами для использования его в качестве охлаждающей среды вместо воздуха (водород характеризуется высокой теплопроводностью и удельной теплоемкостью). При использовании водорода охлаждение вращающихся электрических машин существенно улучшается. Кроме того, при замене воздуха водородом заметно снижаются потери мощности на трение ротора машины о саз и на вентиляцию, так как эти потери приблизительно пропорциональны плотности газа. Ввиду отсутствия окисляющего действия кислорода воздуха замедляется старение органической изоляции обмоток машины и устраняется опасность пожара при коротком замьпсании внутри машины. Наконец, в атмосфере водорода улучшаются условия работы щеток. Так как водородное охлаждение позволяет повысить мощность машины и ее КПД, крупные турбогенераторы и синхронные компенсаторы выполняются с водородньпч охлаждением (еще более эффективное охлаждение достигается циркуляцией жидкости внутри полых проводников обмоток статора и даже - что, конечно, технически сложнее - ротора). Применение циркуляционного водородного охлаждения требует герметизации машины (подшипники уплотняются при помощи масляных затворов). Чтобы избежать попадания внутрь машины B03ziyxa (водород при содержании его в возд тсе от 4 до 74% по объему образует взрывчатую смесь - гремучий газ), внутри машины поддерживается некоторое избыточное давление, сверх атмосферного постепенная утечка водорода восполняется подачей газа из баллонов. При прочих равных условиях электрическая прочность водорода примерно на 40 %, а угольного ангидрида СОт - на 10% ниже, чем электрическая прочность воздуха. Для заполнения  [c.128]

В плоском приборе была исследована теплопроводность воздуха, кислорода, аргона, водорода. Опыть проводились при температурах порядка 20°С. Конвективный перенос тепла в слое газа был пренебрежимо мал. Лучистый теплообмен через слой газа между сердечником и крышками прибора также характеризовался малым коэффициентом теплоотдачи, равным 0,10— 0,35 вт1м -град.  [c.116]

Принцип работы водородомеров основан на том, что теплопроводность водорода значительно выше теплопроводности воздуха или кислорода, поэтому присутствие водорода, в этих газах заметно превышает их теплопроводность изменение теплопроводности измеряется с помощью дифференциального детектора термокондуктометрического типа — катарометра.  [c.21]

Осн. источником тепла в Т. служит переход энергии УФ-излучения, потраченной на диссоциацию и ионизацию, в тепло при двойных и тройных столкновениях, а также при тушении возбуждённых атомов кислорода при столкновениях с др. частицами. Тепло выделяется также при диссипации в Т. акустич. и гравитац. волн, а также энергии проникающих внутрь нес солнечных и космич. частиц. Молекулы и атомы кислорода не могут излучать больших количеств ИК-радиации, а сильноизлучающих газов СО2 и Н2О в б. ч. т. нет. Лишь в самой ниж. части Т. иек-рую роль играет охлаждение воздуха, порождаемое ИК-излуче-нием трехатомных газов О3, HjO и Oj. В целом охлаждение т. происходит в осн. за счёт теплопроводности, создающей поток тепла в более холодную мезосферу. Темп-ра, плотность, циркуляция воздуха и др. параметры Т. подвержены заметным суточны.м и сезонным колебаниям. Они зависят от колебаний интенсивности приходящей солнечной радиации, корпускулярного излучения, а также от развития гравитац. и акустич. волн, возникаюищх как в нижележащих атм. слоях, так и в самой Т. Дневное нагревание сопровождается расширением Т., подчас превосходящим 100 км, а ночное охлаждение — её оседанием. Чем больше активность Солнца, тем больше и временная и пространственная изменчивость темп-ры, плотности и др. характеристик Т,  [c.97]

Затруднения при сварке и наплавке меди на сталь связаны с ее физико-химическими свойствами, высоким сродством меди к кислороду, низкой температурой плавления меди, значительным поглощением жидкой медью газов, различными величинами коэффициентов теплопроводности, линейного расширения и т.д. Одним из основных возможных дефектов при сварке следует считать образование в стали под слоем меди трещин, заполненных медью или ее сплавами (рис. 13.11, а). Указанное явление объясняют расклинивающим действием жидкой меди, проникающей в микронадрывы в стали по границам зерен при одновременном действии термических напряжений растяжения.  [c.506]

Уже целое столетие развиваются экспериментальные и теоретические исследования экзотермических волн, распространяющихся в горючих смесях газов, а также в твердых и жидких горючих средах. Механизмом тепловыделения в таких средах являются экзотермические химические реакции, скорость протекания которых при комнатной температуре практически равна нулю и становится очень большой при температурах, достигаемых в ходе реакции (например, смеси водорода или ацетилена с кислородом или с воздухом, смесевые твердые топлива ракетных двигателей). Механизм распространения тепла в несгоревшую еще смесь естественно предполагать обусловленным процессами переноса — теплопроводностью и диффузией активных частиц, т.е. не связанным с макроскопическим упорядоченным движением среды. Однако уже в 1881г. Бертло и Вьей, Маллар и Ле Шателье открыли явление детонации, при котором горение распространяется по газовой среде со скоростями, в тысячи и миллионы раз превосходящими скорость нормального распространения пламени. Механизм распространения зоны тепловыделения в этом случае связан с прохождением по холодной горючей смеси сильной ударной волны, сжимающей и нагревающей смесь и тем самым включающей химическую реакцию с интенсивным тепловыделением роль процессов переноса в распространении зоны тепловыделения в практически реализуемых случаях химической детонации мала.  [c.117]

Наряду с этим при разогреве газа до сравнительно высоких температур порядка 1000 К, в газе возникают физико-химические превращения, изменяющие его первоначальный состав. Так, в воздухе при достижении 2000 К значительная часть молекулярного кислорода диссоциирует и превращается в атомарный при 4000 К начинается диссоциация азота, а при более высоких температурах, порядка 7000—10 000 К, наблюдается заметная ионизация воздуха, сопровождающаяся образованием свободных электронов (электронного газа). В этих условиях в газе происходит резкое возрастание теплопроводности и электропроводности, между его молекулами возникают куло-новы силы взаимодействия. Все это позволяет приписать газу особое агрегатное состояние, именуемое плазмой (точнее, низкотемпературной плазмой).  [c.350]


Принцип лазерной резки заключается в том, что остросфокусирован-ный лазерный луч иащавляют на поверхность материала. Под его воздействием металл быстро расплавляется. Пары и жидкий металл удаляются из зоны резания потоком инертного газа, кислорода или воздуха. Применение кислорода позволяет значительно повысить скорость и качество резки За счет получения дополнительного тепла в ходе экзотермической реакции кислорода с материалом. Пригодность материалов к лазерной резке зависит от степени поглощения ими лазерного излучения, а также их теплопроводности. Хорошо поддаются лазерной резке неметаллы — керамика, кожа, ткань, древесина ИТ, п. практически не поддаются ей материалы с высоким коэффициентом отражения и высокой теплопроводностью — медь, латунь, золото, серебро и т. п.  [c.287]

При газовзрывной штамповке в камеру сгорания под давлением от отдельных источников вводится смесь, состоящая из кислорода с водородом или с природным газом (метаном). Соотношение составляющих газовой смеси регулируется впуском одного из инертных газов —азота, гелия, аргона или двуокиси углерода. При зажигании горючей смеси образуется давление газов, вследствие чего листовая штамповка в матрице деформируется и принимает ее внутреннюю форму. Установка для осуществления этого процесса (рис. 146) состоит из конической камеры 6, присоединенной к ней толстостенной трубки 5, служащей для инициирования взрывной волны, и резиновой диафрагмы 7, обеспечивающей герметизацию камеры в месте стыка ее с матрицей, установленной в контейнере 9. Контейнер матрицы и корпус взрывной камеры присоединяются друг к другу при помощи быстроразъемного устройства. Для пуска горючего газа и кислорода служит система трубопроводов, кранов и предохранительных клапанов, показанных схематически на рисунке. Смесь зажигается с помощью автомобильной свечи 4, соединенной проводами с источником тока высокого напряжения. Давление во взрывной камере при ее заполнении газовой смесью определяется манометром 3. Продувка взрывной камеры осуществляется азотом или чистым воздухом, поступающим по трубопроводам от компрессора или баллона высокого давления. Заготовка 1 перед штамповкой укладывается на матрицу 8 и прижимается к ее фланцу прижимным кольцом 2, при этом воздух из матрицы отсасывается. После штамповки контейнер с матрицей быстро отсоединяется от корпуса, выдвигается в сторону и готовая деталь удаляется из матрицы. Этот метод применяется для штамповки деталей из плоских, цилиндрических и конических заготовок. Штампы изготовляются из металлов, имеющих повышенную теплопроводность.  [c.275]

При начальной температуре огневой стенки 850... 1000 К, потери на ее охлаждение несколько выше. Однако при тягах ЖРД (8. .. 10) -10 Н и более дополнительные потери удельного импульса относительно невелики. В то же время ресурс камеры сгорания увеличивается до нескольких десяткрв тысяч секунд. За это время водОрод и кислород проникают в медную стенку и растворяются в металле. Растворение газов и, особенно, водорода снижает теплопроводность медных сплавов. Теплопроводность огневой стенки снижается также из-за микрорартрескивания металла. Это вызывает увеличение перепада температур в стенке, а следовательно, павышение температуры ее поверхности со стороны продуктов сгорания, что ускоряет процесс растворения кислорода и водорода, охрупчивания и растрескивания металла стенки по приведенной выше схеме. Поскольку скорость растворения и диффузии у водорода существенно выше, чем у кислорода, то скорость процесса разрушения огневой стенки будет определяться более низкой скоростью растворения кислорода. Следовательно, в этом случае, при работе камеры сгорания ЖРД, происходит самоускоряющийся процесс ее растрескивания и перегрева, причем наиболее интенсивно этот процесс протекает в областях камеры с наибольшей начальной температурой стенки. Такими областями обычно являются входная часть сопла, или область критического сечения сопла.  [c.99]

Замерзание редуктора. При прохождении газа через редуцирующий клапан из камеры высокого давления в камеру низкого давления происходит снижение давления газа (дросселирование) и его охлаждение. Так уменьшение давления на 1 кгс/см вызывает понижение температуры газа приблизительно на ГС. Так как газ всегда содержит пары воды, то при определенных условиях (низкая температура окружающего воздуха, интенсивный отбор газа) газ, пройдя редуцирующий клапан, может иметь отрицательную температуру и вызывать образование кристаллов льда и закупорку ими каналов клапана и редуктора. В этом случае редуктор замерзает и перестает нормально работать. Особенно зто> опасно для кислорода и водорода, хранящихся в баллонах под высоким давлением. Замерзаемость редукторов происходит тем чаще, чем выше влажность и расход газа, больше перепад давления в редукторе, меньше масса редуктора и теплопроводность его материала, а также, чем ниже температура газа в баллоне.  [c.65]

Высокая химическая активность в сочетании с низкой теплопроводностью, высоким электросопротивлением и температурой плавления, склонность к росту зерна в околошовной зоне определяют особенности сварки титана и его сплавов. Большая химическая активность титана при высоких температурах по отношению к азоту, кислороду и водороду затрудняет его сварку. Необходимым условием для получения качественного соединения при сварке титана плавлением является полная двухсторонняя защита от взаимодействия с воздухом не только расплавленного металла, но и нагретого выше 600°С основного металла и шва. При нагреве до высоких температур титан склонен к росту зерна-. Для устранения этого сварку следует выполнять при минимально возможной погонной энергии. Вследствие загрязнения металла сварного шва газами понижается его пластичность, что приводит к образованию холодных трещин. Загрязнение металла шва водородом можно предупредить, применяя электродную или присадочную проволоку, предварительно подвергнутую вакуумному отжигу. Содержание водорода в такой проволоке не превышает 0,004—0,006%. Большое влияние на качество сварного соединения оказывает состояние поверхности кромок и присадочного металла. Для удаления окиснонитридной пленки, образующейся после термообработки, ковки, штамповки, используют опеско-струивание и последующее травление в смеси солей с кислотами или щелочами.  [c.146]

Природная вода содержит растворенные газы, минеральные соли, органические вещества и твердые механические частицы. Растворенные газы (кислород и углекислый газ) вызывают повышенную коррозию металла, механические примеси загрязняют внутреннюю поверхность котла и ухудшают теплопередачу, а растворенные минеральные соли кальция и магния при нагревании воды выпадают в осадок, образуя на поверхности котла трудно-удалимый твердый слой, называемый накипью. Накипь, имея очень малую теплопроводность, ухудшает передачу теплоты нагреваемой воде.  [c.193]

Затруднения при сварке и наплавке меди на сталь связаны с высоки.м сродством меди к кислороду, низкой температурой плавления меди, значительным ноглоЩение.м жидкой. медью газов, различны.ми величинами коэфф1щиентов теплопроводности, линейного расширения и т. д.  [c.220]


Смотреть страницы где упоминается термин Кислород теплопроводность газа : [c.78]    [c.144]    [c.209]    [c.225]    [c.349]    [c.165]    [c.93]    [c.370]    [c.323]    [c.430]    [c.690]    [c.155]    [c.690]    [c.618]    [c.223]    [c.108]    [c.199]   
Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.442 ]



ПОИСК



Газы — Теплопроводность

Кислород

Кислород теплопроводность

Теплопроводность газов



© 2025 Mash-xxl.info Реклама на сайте