Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Свойства 398 —Химический

Диаграммы состав — свойство имеют важное значение, поскольку позволяют правильно осуществлять выбор сплава с определенными эксплуатационными характеристиками. Например, сплавами с большим электросопротивлением являются твердые растворы, сплавами высокой твердости —сплавы, образующие химические соединения и т. д.  [c.51]

Температура нагрева при этом определяется с учетом требуемых механических свойств по кривым, приведенным на рис. 63. Отжиг первого рода применяют также для литых сплавов с химически-неоднородным составом, т. е. для сплавов с признаками зональной или дендритной ликвации. Сплавы в этом случае нагревают до высоких температур для ускорения процесса диффузии, приводящего к выравниванию химического состава сплава, т. е. к его гомогенизации.  [c.107]


Сплав 0Т4 относится к сплавам системы титан — алюминий — марганец, как и сплав ВТ4, но в отличие от последнего содержит меньше алюминия и поэтому имеет более высокие пластические свойства. Химический состав сплава ОТ4 приведен в табл. 10.  [c.376]

Марки твердых сплавов, их химический состав и физико-механические свойства  [c.50]

Состав и свойства. Химический состав. Основными легирующими элементами деформируемых сплавов (табл. 7) являются медь, магний, марганец, цинк, кремний, а также титан, хром, бериллий, никель, цирконий, железо и др.  [c.13]

Название сплава и химический состав Технологические свойства  [c.111]

Хромистые сплавы. Свойства высокохромистого чугуна с большим содержанием углерода частично описано в разделе Отливки из жаростойкого чугуна , однако в химическом машиностроении применяются преимущественно высокохромистые сплавы с пониженным содержанием углерода. До сих пор нет единого мнения в классификации высокохромистых сплавов, содержащих более 1% С. По данным работы [57], характерное для чугуна эвтектическое превращение в сплавах, содержащих 35% Сг, наступает при содержании 1,5—2,5% С, а по данным работы [25], сплав, содержащий 20% Сг и более — 0,6% С должен классифицироваться как белый чугун, если применять терминологию, принятую для диаграммы железо—углерод. Бесспорным является то, что эвтектическое превращение в высокохромистых сплавах выявляется при значительно более низком содержании углерода, так как по мере увеличения содержания хрома в железоуглеродистом сплаве растворимость углерода непрерывно уменьшается.  [c.225]

Титан и его сплавы (181). Химический состав титановых сплавов (181). Механические свойства титана и его сплавов (182). Примерное назначение титановых сплавов (182).  [c.534]

Твердые сплавы (208). Условное обозначение марок твердых сплавов (210). Маркировка твердых сплавов окраской (211). Химический состав стандартных металлокерамических твердых сплавов (211). Химический состав литых и порошкообразных твердых сплавов (212). Физико-механические свойства твердых металлокерамических сплавов (213). Примерное назначение твердых сплавов (213). Применение твердых сплавов в качестве износостойких материалов (218).  [c.535]

Титан и его сплавы (133). Химический состав титановых сплавов (133). Механические свойства титана и его сплавов (134). Примерное назначение титановых сплавов (134).  [c.538]


Магний и его сплавы (135). Химический состав магниевых сплавов (136). Механические свойства магниевых сплавов (136). Примерное назначение магниевых сплавов (137).  [c.538]

Аналогично ведут себя ленты из аморфных сплавов других химических составов. Можно считать, что релаксация напряжений при термической обработке является эффективным средством улучшения магнитных свойств. Однако при превышении температуры термической обработки выше определенного значения наблюдается сильный рост Яс (см, рис, 5.28). Это резкое повышение Не происходит вблизи температуры кристаллизации аморфного сплава, по-  [c.148]

Механизм развития горячей коррозии зависит, в первую очередь, от особенностей химического взаимодействия между расплавом осажденной соли и данным сплавом. В частности, именно присутствие соли является причиной появления на поверхности сплава продуктов такого взаимодействия, не обладающих защитными свойствами. Химические реакции могут быть вызваны изменением растворимости одних фаз в областях стабильности оксидов или образованием других фаз вне этих областей. При обсуждении возможных механизмов развития горячей коррозии удобно разделить их на две группы. В первую можно включить все механизмы, имеющие ту общую особенность, что образование продуктов химических реакций, не обладающих защитными свойствами, происходит в них вследствие некоторого "флюсования" сплава расплавом соли. Другая группа механизмов отличается тем, что в процессах образования продуктов химических реакций, не обладающих защитными свойствами, главную роль играют некоторые компоненты, входящие в состав осажденной соли (например, S или С1). Иногда влияние осажденного слоя на реакции в системе сплав-газ может быть и незначительным. В таких случаях осадок на поверхности сплавов часто формируется в виде пористой твердой фазы. Механизм развития  [c.68]

По вопросам номенклатуры марок сталей и сплавов, их химического состава, гарантированного уровня механических свойств, а также режимов технологических процессов (ковки, термической обработки и др.) Марочник является рекомендуемым материалом при проектировании машин и изготовлении поковок, отливок, деталей машин и сварных конструкций и может быть полезен как справочный материал для инженеров - конструкторов, технологов и металловедов.  [c.13]

Химико-термическая обработка поверхностное легирование) — термическая обработка материалов (в основном металлов и сплавов) в химически активных средах для изменения химического состава, структуры и свойств в поверхностных слоях.  [c.138]

Классификация металлических сплавов по химическому составу, основанная на указании главного компонента сплава (железо, медь, алюминий и др.), имеет традиционный характер и получила наибольшее распространение. Однако внутри таких классов, определенных с учетом химического состава по главному компоненту сплава, распределение на группы и подгруппы чаще всего проводится по характерным особенностям в свойствах или по области применения данного сплава или нескольких сплавов.  [c.145]

Магниевые отливки, защитные свойства оксидной пленки которых значительно ниже, чем оксидной пленки алюминиевых сплавов, подвергаются химической очистке, в результате чего на их поверхности создаются хроматные пленки. Вследствие малой продолжительности оксидирования магниевых сплавов получение равномерной хроматной пленки возможно только при условии хорошо подготовленных поверхностей. Поэтому отливки из магниевых сплавов особенно тщательно очищают, обезжиривают и подготавливают по специальной технологии (табл. 26). Порядок выполнения операций по очистке и подготовке поверхности отливок следующий обезжиривание, промывка в горячей, а затем холодной воде травление кипячение в содовом растворе промывка в теплой воде обработка в растворе хромового ангидрида промывка в теплой воде оксидирование промывка в холодной, а затем горячей воде сушка.  [c.465]


Химические свойства. Химические свойства — это способность металлов и сплавов противостоять окислению и разрушению под действием внешней среды влаги, воздуха, кислот и т. д. Химическое разрушение под действием указанных факторов называют коррозией металлов. Коррозия приносит огромный вред народному хозяйству.  [c.31]

Металлы характеризуются прочностью, твердостью и пластичностью, коррозионной стойкостью, жаропрочностью, высокой электрической проводимостью и многими другими ценными свойствами. Они хорошо обрабатываются литьем и давлением, режутся и свариваются. В технике широко используются магнитные свойства металлов, их способность противостоять агрессивным химическим средам. Чистые металлы — железо, медь, алюминий, никель, цинк, свинец и другие — составляют основу огромного количества сплавов. Изменяя химический состав чистых металлов, вво-  [c.3]

Газовая коррозия в окислительных средах. Наиболее часто ка практике наблюдается химическая коррозия при высоких температурах— газовая коррозия. Скорость газовой коррозии зависит от состава сплава, свойств образующихся продуктов коррозии, состава и свойств газовой среды, температуры и др.  [c.250]

Ядерные топливные элементы, содержащие ядерное топливо, должны быть плакированы нерасщепляющимся материалом для предотвращения коррозии, деформации и потери радиоактивных частиц в охлаждающую жидкость. Ядерные топливные элементы плакируются различными металлами, в частности алюминием, коррозионно-стойкой сталью, магнием и его сплавами, цирконием и его сплавами, никелем, бериллием, ниобием, ванадием, а также графитом. Основными плакирующими металлами являются алюминий, цирконий, магний и коррозионно-стойкая сталь. Выбор плакирующих материалов зависит от их ядерных свойств, химической и физической совместимости с ядерным топливом, коррозионной стойкости и механических свойств. Плакированный слой должен обладать достаточно высоким пределом ползучести, чтобы оказать сопротивление деформации, вызванной давлением газов, вследствие процесса расщепления атомов.  [c.102]

Важное значение для формирования свойств сталей и сплавов имеет химическое сродство элементов. Установлено, что при отжиге стали углерод перемещается в объемы, где расположены элементы, обладающие большим с ним сродством, чем железо [115]. Л. С. Лившиц показал, что углерод перемещается в объемы, содержащие марганец, хром, молибден, вольфрам, ванадий или ниобий . Наибольшую подвижность атомов углерода при перемещении вызывает ниобий, наименьшую марганец.  [c.120]

Литейные латуни сплавы, марки, химический состав и назначение которых приведены в ГОСТ 17711-93 (табл. 19.12). Комплексное легирование латуней улучшает не только механические свойства и коррозионную стойкость, но и специальные литейные свойства латуней. Кремний повышает механические и литейные свойства латуней. Алюминий повышает прочностные и коррозионные свойства, а также жидкотекучесть. Железо замедляет рост зерен при кристаллизации, поэтому повышает механические свойства отливок.  [c.736]

Рис. 13. Зависимость характеристик свойств медно-никелевых сплавов от химического состава Рис. 13. Зависимость характеристик свойств <a href="/info/63786">медно-никелевых сплавов</a> от химического состава
Пользуясь достижениями металлокерамической технологии (порошковой металлургии), конструктор имеет возможность спроектировать такие детали и узлы машин, которые невозможно выполнить из обычных материалов. Эти новые материалы позволяют создать детали из весьма тугоплавких металлов и сплавов композиции из разных металлов, не смешивающихся в расплавленном виде и не образующих твердых растворов или интерметаллических соединений (железо — свинец — вольфрам — медь) композиции из металлов и неметаллов, пористых металлов и др. материалов, получение которых иным способом невозможно. Возможно также получение деталей со специальными заранее заданными физико-механическими свойствами, а также получение чистых металлов и сплавов заданного химического состава.  [c.13]

Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГ2О3) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Fe-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемо-сорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия d-электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией d-электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % Ni.  [c.91]


Магнитные свойства. Не все сверхпроводники одинаково ведут себя в магнитном поле. По своим магнитным свойствам они делятся на сверхпроводники первого и второго рода. Эффект Мейс-снера -V Оксеифельда наблюдается у сверхпроводников первого рода, к которым относятся все элементарные сверхпроводники кроме ниобия. Сверхпроводники второго рода (ниобий, сверхпроводящие сплавы и химические соединения) не обнаруживают эффекта Мейсснера — Оксенфельда. Магнитное поле в них проникает, но весьма своеобразным образом.  [c.265]

В процессе нагрева в Со — В-покрытиях протекают необратимые структурно-фазовые превращения с выделением фазы борнда Со В в области температуры 215 °С и фазы С02В в области температур 425—460 °С Свойства химически восстановленных Со — В сплавов сильно отличаются как от гальванического кобальта, так и от сплавов Со—Р Это относится к таким свойствам, как твердость, износостойкость и магнитные характеристики  [c.63]

Лишь некоторые металлы обладают известной активностью, что псполь-зуется в соответса-вующпх химико-технологических процессах. Часть металлов (золото, платина, серебро, никель и др.) и пх сплавов являются химически стойкими. В основном я<е металлы и сплавы изменяют свойства под действием ХИМПЧ0С1Ш активных сред и даже обычных атмосферных условий.  [c.10]

Медноникелевые сплавы — сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению они подразделяются на две группы — конструкционные и электротехнические сплавы. Марки, химический состав и назначение медно-нпкелевых сплавов приведены в табл. 39, а виды полуфабрикатов и их механические свойства — в табл. 40.  [c.165]

Наиме- нование сплава Основа сплава (по химическому составу) Реко- мендуе- мая темпе- ратура Тем- пера- тура испы- таний С Кратковременные механические свойства Длительная прочность Примечание  [c.31]

От редакции. Настояа1ая глава не исчерп . -вает всех данных из области современной химии, применяемых в машиностроении. Ряд дополнительных данных содержится в главах 2-го тома (физико-химические и механические свойства чистых металлов, Теория и расчеты процессов горения) б-го тома (Чугун, Сталь, Цветные металлы и сплавы),5-го тома (Электрические и химико-механические способы размерной обработки металлов. Технология термической и химико-термической обработки металлов, Технология покрытий деталей машин, Технология производства металлоке-рамнческих деталей). Подробные данные по ряду вопросов можно найти в приведенных ниже литературных источниках. Так, например, общие законы химии и свойства химических элементов и их соединений изложены в источнике [29] основные положения органической химии и общие свойства органических соединений — в (9], [38] строение атома, свойства элементарных частиц, теория  [c.315]

Ллюмвний и его сплавы (171). Химический состав алюминиевых сплавов (172). Механические свойства алюминиевых сплавов в отожженном состоянии (174). Примерное назначение алюминиевых сплавов (175). Сводная таблица полуфабрикатов из алюминия и алюминиевых сплавов (179).  [c.534]

Состав сплавов свойства и сорта-мент термоэлектродной проволоки, типы, размеры и свойства термопреобра-зователей широкого промышленного использования стандартизованы. Химический состав никелевых и медно-никелевых сплавов для термоэлектродов соответствует ГОСТ 492—73. Ра. бочие температуры термопреобразователей представлены в табл. 28.  [c.532]

Одна из главных проблем при сварке алюминия и его сплавов - высокая химическая активность алюминия он образует на поверхности окисную пленку AI2O3 с температурой плавления 2050 °С, которая не расплавляется в процессе сварки и покрывает металл Прочной оболочкой, затрудняя образование сварочной ванны. Частицы пленки, попадающие в шов, снижают механические свойства сварных соединений, их работоспособность. Для осуществления сварки должны быть приняты меры по разрушению и удалению пленки и защите металла от повторного окисления. Вследствие большой химической прочности AI2O3 восстановление алюминия из окисла в условиях сварки практически невозможно. Не удается также связать AI2O3 в прочные соединения сильной кислотой или щелочью. Поэтому действие шлаков для сварки алюминия основано на процессах растворения и смывания разрушающейся окисной пленки расплавленным шлаком.  [c.132]

Диалшгнетизм — свойство веществ диамагнетиков) намагничиваться в направлении, противоположном действующему на них внешнему магнитному полю. Диамагнетизм присущ всем веществам, однако во многих случаях он маскируется парамагнетизмом, ферромагнетизмом и др. Диамагнетиками являются инертные газы (Nj, Hj), некоторые металлы (Si, Р, Bi, Zn, Си, Au, Ag, Hg), растворы, сплавы и химические соединения (например, галогенов), а также многие органические и неорганические соединения с неполярной связью. Намагниченность, связанная с диамагнетизмом, обычно невелика, и исключение представляют сверхпроводники, которые иногда относят к диамагнетикам.  [c.99]

Сплав Свойства сплава Физико-химические температуры плавления и полиморфного превращения, модуль упругости, химический и фазовый состав и др. Технологические литейные (жвдкотекучесть, усадка, ликвация), свариваемость, обрабатьшаемость резанием и др. Специальные (эксплуатационные) износостойкость, жаропрочность, коррозионная стойкость и др.  [c.380]

Если металлы А и В образуют химическое соединение АтВп, в котором не растворяются ни Л, ни В, то свойства сплавов изменяются по двум участкам ломаной прямой линии (рис. 37, г) причем максимальные свойства (твердость, электросопротивление и т. д.) достигаются у химического соединения. Другие свойства при составе сплава, соответствующем химическому соединению, могут иметь минимум, например пластичность.  [c.56]

Химическое соединение образуется, когда компоненты сплава Л и В вбтупают в химическое взаимодействие. При этом соотношение чисел атомов в соединении соответствует его химической формуле А В . Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен. Свойства химического соединения резко отличаются от свойств образующих его компонентов. Обычно они являются очень твердыми и хрупкими веществами. Часто химические соединения рассматривают как самостоятельные компоненты, образующие сплавы с исходными компонентами, составляющими соединение.  [c.49]

Исключены марки стали и сплавов близкого химического состава, обладающие практически одинаковыми физико-механическмми свойствами, а также стали и сплавы нерационально легированные цефицитными элементами и не имеющие преимуществ перед другими более рационально легированными. Кроме того, исключены малораспространенные и нетехнологичные в производстве стали и сплавы. Унификация марок стали и сплавов даст возможность осуществить в промьпнленности  [c.3]

Основные их преимущества перед металлами и сплавами заключаются в значительно (3—8 раз) более -низкой плотности и в высоком коэффициенте использования при переработке (0,84 — 0,95 вместо 0,5 — 0,6 для металлов), хороших электро- и теплоизоляционных (кроме графита) свойствах, химической стойкости -в растворах минеральных и органических кислот, щелочей и солей, что обеспечивает увеличение срока с хужбы изделий в несколько раз.  [c.139]



Смотреть страницы где упоминается термин Сплавы Свойства 398 —Химический : [c.208]    [c.533]    [c.160]    [c.21]    [c.122]    [c.102]    [c.403]    [c.245]   
Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



18 — Механические свойства при из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический соста

232 — Химический состав и применение из сплавов алюминиевых деформируемых — Механические свойства

Влияние на обрабатываемость резанием жаропрочных сталей и сплавов их химического состава, физико-механических свойств и термической обработки

Влияние химического состава на коррозионные свойства сплавов титана

Влияние химического состава на магнитные свойства и структуру сплавов

Влияние химического состава на механические свойства сплавов

Вольфрамокобальтовые сплавы — Механические свойства 188 — Химический

Вольфрамокобальтовые сплавы — Механические свойства 188 — Химический парой — Физико-механические свойства 189 — Химический состав

Вольфрамокобальтовые сплавы — Механические свойства 188 — Химический состав

Жаропрочные сплавы на никелевой поставляемого полуфабриката 330 Марки 326—327 — Механические свойства 328—329 — Назначение 326 Химический состав

Зависимость химического состава и свойств электролитических осадков сплавов от состава электролита и условий электролиза

Закономерности изменения коэффициента линейного расширения и механических свойств от химического состава и метода приготовления сплавов

Защитно-декоративные свойства гальванических и химических покрытий на магниевых сплавах

Классификация, химический состав и физикомеханические свойства цветных металлов и сплавов (А. И. Колпашников)

Классификация, химический состав и физихо-механичсскпе свойства сплавов титана

Конструкционные легированные стали и сплавы с особыми физическими и химическими свойствами

Коррозионностойкие сплавы высоколегированные 44—49 ¦— Коррозионная стойкость 46—48 — Марки свойства 46 —¦ Химический состав

Коррозионностойкие сплавы высоколегированные Коррозионная литейные — Механические свойства и термическая обработка 50 Химический состав

Легированные стали и сплавы с особыми химическими и физическими свойствами

Листы биметаллические — Применение из алюминиевых сплавов Механические свойства 426 Химический состав

Магниевые сплавы со специальными физическими н химическими свойствами

Нержавеющие сплавы Коррозионная стойкость литейные — Механические свойства и термическая обработка 50 Химический состав

Полосы биметаллические сталь — сплав из бронз безоловянных (специальных) — Механические свойства 242 Химический состав и применение

Применение висмутовые — Диаграмма состояния сплавов систем висмут—кадмий, висмут—олово 98 — Применение 98 — Свойства 98 — Химический состав

Применение галлиевые — Диаграммы состояния сплавов систем галлий—олово, галлийиндий, галлий—цинк, галлий—свинец 99, 100 — Свойства 98, 99 — Химический состав

Применение золотые — Диаграмма состояния сплавов систем золото—серебро, золотомедь, золото—никель 79 — Применение 74, 77, 79 — Свойства 74, 76—79 — Химический состав

Применение индиевые — Диаграмма состояния сплавов системы индий—кадмий 93 Применение 93 — Свойства 93, 94 — Химический состав

Применение кадмиевые — Диаграммы состояния сплавов систем кадмий—цинк, кадмийсеребро 94 — Применение 94 — Свойства 97, 98 — Химический состав

Применение свинцовые — Диаграмма состояния сплавов систем свинец—олово, свинецкадмий, свинец—серебро 92 — Применение 92, 93 — Свойства 92, 93 — Химический состав

Применение серебряные — Диаграмма состояния сплавов системы медь—серебро 70 Применение 70, 74 — Свойства 70—74 — Химический состав

Прутки из сплавов титановых 183 Механические свойства при различных температурах температурах 209 — Размеры и отклонения допускаемые 209, 201 Химический состав

СПЛАВЫ ЦВЕТНЫЕ — СТАЛЬ АВТОМАТНАЯ свойства 283 — Химический соста

СТАЛИ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ - Коррозионно-стойкие стали для общего и химического машиностроения

СТАЛИ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ Коррозионностойкие стали для общего и химического машиностроения

СТАЛИ И СПЛАВЫ С ОСОБЫМИ ФИЗИЧЕСКИМИ СВОЙСТВАМИ Стали с особыми химическими и механическими свойствами

Свойства медно-цинковые — Диаграмма состояния сплавов системы медь—цинк 59Марки 60—63 — Применение 61 — Свойства 60—63 — Химический состав

Свойства металлов и их сплавов Физические и химические свойства

Свойства на основе железа (железные) — Диаграмма состояния сплавов системы железо—марганец 84 — Применение 82, 83 — Свойства 82, 83 — Химический состав

Сплавы Химический состав — Механические свойства

Сплавы Химический состав — Основные свойства

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы алюминиевые деформируемые для прессованных профилей Механические свойства 430 Химический состав

Сплавы алюминиевые промышленные легкоплавкие 452, 453 —Свойства 452 — Химический соста

Сплавы алюминия — Онсядирование алюминиевые литейные — Механические свойства 62 — Химический состав

Сплавы свинцовые 374—381 —Свойства 380 —Химический соста

Сплавы сложнолегироваиные Длительная титановые — Механические свойства 11 —Области применения 11 Термическая обработка 10 — Химический состав

Стали и сплавы с особыми физическими и химическими свойствами

Стали и сплавы с особыми химическими свойствами (стойкие против коррозии)

Сталь и сплавы с особыми физическими и химическими свойствами

Структура, магнитные свойства и химический состав я- к я-фаз при высококоэрцитивном состоянии сплавов ЮНДК И ЮНДКТ

Трубы из сплавов магниевых деформируемых прессованные — Механические свойства отклонения допускаемые 211, 212 Химический состав

Физико-химические константы и механические свойства важнейших элементов, образующих металлические сплавы

Физико-химические свойства и обработка тугоплавких металлов и их сплавов

Химическая и структурная неоднородность и механические свойства титановых сплавов

Химические свойства металлов и сплавов

Химический никелевые — Диаграмма состояния сплавов системы никель—хром 79 Применение 79—82 — Свойства 79—82 — Химический состав

Химический состав и из сплавов алюминиевых деформируемых прессованные — Выносливость 61 — Механические свойства

Химический состав и из сплавов алюминиевых деформируемых — Механические свойства

Химический состав и механические свойства исследованных сплавов титана

Химический состав и механические свойства сплавов титана

Химический состав и механические свойства цветных металлвв и сплавов

Химический состав и механические свойства цветных металлов и их сплавов



© 2025 Mash-xxl.info Реклама на сайте