Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбины паровые вибрация

В разделе прочности затронуты специальные вопросы расчёта лопаток и дисков паровых турбин. Проблема вибрации лопаток паровой турбины рассматривается на основе трудов советских учёных успешное решение этой задачи позволило отечественным турбостроительным заводам освоить производство крупных быстроходных паровых турбин.  [c.742]

Важнейшее значение для турбины представляет вибрация лопаток и дисков. Вибрация рабочих лопаток является серьезной и трудно устранимой причиной аварий паровых турбин. Когда вибрация лопаток еще не была изучена, поломки лопаточного аппарата, связанные с вибрацией, были особенно часты.  [c.113]


Паровая вибрация низкой частоты возникает вследствие появления в проточной части турбины и ее уплотнениях газодинамических циркуляционных сил, вызывающих автоколебания ротора.  [c.516]

Ясно также, что интенсивность возмущающих венцовых сил зависит от режима работы турбины с увеличением нагрузки и приближением начальных параметров пара к номинальным значениям венцовые силы растут. Характерным признаком возникновения низкочастотной паровой вибрации является ее появление при определенной нагрузке турбины, когда интенсивность венцовых сил достигает достаточного значения. Поэтому устранение паровой вибрации путем установки виброустойчивых подшипников невозможно, хотя, конечно, демпфирующие свойства смазочного слоя подшипников в определенной степени влияют и на снижение паровых колебаний, однако это влияние уменьшает колебания, но не ликвидирует их причину.  [c.517]

При эксплуатации оборудования котельного цеха систематически проверяется исправность всех установленных питательных насосов. У котлов с давлением до 2,35 МПа каждый из насосов кратковременно включается в работу не реже одного раза в смену, а у котлов с большим давлением — в сроки, предусмотренные производственной инструкцией, но не реже одного раза в 2—3 дня. При пробном пуске насосов проверяют создаваемое ими давление, отсутствие течи через неплотности, нагрев подшипников, амплитуду вибрации, исправность привода насоса (электродвигатель, турбина, паровая машина).  [c.81]

Как уже отмечалось, вибрации сопутствуют работе всех машин и часто оказываются причиной, сдерживающей дальнейший прогресс в той или иной области техники. Так, например, дальнейшее увеличение быстроходности высокоскоростных роторных машин ограничено вибростойкостью ротора и подшипниковых опор, повышение мощности паровых и газовых турбин — вибрациями лопаток последних ступеней, создание мощных вертолетов — колебаниями рабочих лопастей, повышение точности металлорежущих станков — вибрациями режущего инструмента и станины, создание высокоточных и надежных систем автоматического управления — вибрациями ее отдельных элементов.  [c.15]

Согласно Правилам Регистра СССР (311, в главных паровых турбинах, а также в судовых ГТД ротор должен быть жестким, т. е. во всем диапазоне нагрузок работать без увеличенной вибрации. Критическая частота вращения должна превышать расчетную не менее чем на 20 %. При этом для уменьшения диафрагменных утечек желательно по возможности уменьшать диаметр вала,  [c.293]


Центробежные силы инерции деформируют валы и дополнительно нагружают подшипники. Кроме того, при вращении неуравновешенных звеньев центробежные силы инерции периодически изменяются по направлению, вследствие чего возникают колебания (вибрации) отдельных звеньев машины, которые могут стать причиной их разрушения. Центробежная сила инерции, как это следует из равенства (9.1), возрастает пропорционально квадрату угловой скорости вращения звена, поэтому даже при небольшой массе звена может достигать весьма больших значений. Например, центробежная сила инерции одной лопатки паровой турбины мощностью 300 тыс. кВт при п — 3000 об/мин составляет около 80 тс.  [c.187]

Нормы вибрации для стационарных паровых турбин  [c.10]

Интенсивное развитие энергомашиностроения в нашей стране в послевоенные годы вызвало необходимость создания единых норм по ограничению уровней вибрации однотипных машин. На основе накопленного опыта в пятидесятых годах были разработаны и введены в действие ГОСТ 5908—51 и 5616—50, регламентирующие уровни вибрации паровых турбин и гидрогенераторов. В частности, ГОСТ 5908—51 для паровых стационарных турбин устанавливает допустимые уровни вибрации на крышках подшипников в трех взаимно перпендикулярных направлениях вертикальном, осевом и поперечном (табл. 1.1).  [c.10]

Когда на Харьковском турбинном заводе готовились к производству более экономичной паровой турбины ВКТ-100 мощностью 100 тыс. кет, лопатки последней ступени при испытании разлетались на куски. Исследование показало, что во время работы давление пара, силы инерции и другие силы создают огромные нагрузки на каждую лопатку. В этих условиях колебания давления и температуры пара, а также малейшая неуравновешенность деталей вызывали вибрации, разрушающие лопатки.  [c.198]

Вибрация лопаток долгое время у нас и за границей являлась основным источником аварий паровых турбин, особенно при их значительной мощности. Успешное построение крупных паровых турбин стало возможным лишь после обширных теоретических и экспериментальных исследований, приведших к разработке методов проектирования надёжно работающего лопаточного аппарата [23].  [c.171]

Другой проблемой, которую удалось решить тому же коллективу изобретателей, стала балансировка. В современных машинах и приборах — от гигантских паровых турбин и электромоторов до электробритв — имеется много быстровращающихся деталей. Ось вращения должна обязательно проходить через центр тяжести детали и точно совпадать с главной осью инерции. Иначе возникнут большие центробежные силы, появится сильная вибрация, разбивающая подшипники. На долговечность, точность и высокое качество работы машины рассчитывать не придется.  [c.247]

Вибрация трубок может наблюдаться при неправильной установке конденсатора на пружинных опорах. Натяжение пружин должно быть отрегулировано таким образом, чтобы они воспринимали массу конденсатора с опорожненными от воды паровым и водяным пространствами. Тогда во время работы турбины пружины будут компенсировать тепловые расширения конденсатора по высоте, а масса воды в конденсаторе будет восприниматься через выхлопные патрубки ЦНД опорами турбины.  [c.51]

При паровом расхолаживании следует вести наблюдение за критериями надежности теплового состояния турбины, а также за вибрацией, осевым и относительным перемещением роторов. При увеличении разности температур по металлу корпусов или клапанов парораспределения, при резком снижении температуры пара или при относительном укорочении роторов до предельных значений необходимо приостановить дальнейшее снижение температуры пара или поднять его температуру на 10—30° G и работать до тех пор, пока контрольные показатели не войдут в допускаемые пределы.  [c.121]

Возмущающие импульсы, действующие на лопатки, обычно не превыщают величины статических паровых усилий, поэтому практически опасность усталостных разрущений лопаток возникает только при попадании лопаток в резонанс. Такие условия периодически возникают во всех ступенях турбин, предназначенных для работы на переменных числах оборотов, и в значительном числе ступеней турбин с постоянным числом оборотов, особенно если иметь в виду высокие формы колебаний. При резонансе амплитуды вибраций лопаток ограничиваются рассеянием энергии.  [c.7]


К о в а л е и к о А. Д., Исследования демпфирования при вибрации пакетов лопаток паровых турбин, Сборник докладов по динамической прочности деталей машин , Изд-,во АН СССР, М.—Л., 1946.  [c.109]

При подборе материалов для лопаток паровых турбин (при условии их удачной конструкции) не возникает проблем. Рабочая часть лопатки представляет собой в сечении криволинейный изогнутый продольно профиль, имеющий длину от 10 до 1800 мм. Как закрепленные, так и вращающиеся лопатки должны сопротивляться напряжениям, возникающим под действием пара, а вращающимся лопаткам сообщается также напряжение из-за действия центробежных сил. Нагрузка, действующая на вращающиеся лопатки со стороны пара при прохождении их через стационарные лопатки, оказывает влияние на величину возникающих циклических изгибающих напряжений, которые достигают максимума при совпадении их частоты с основной или гармонической частотой вибрации лопатки. Если это произойдет, резонансная вибрация вызывает напряжения, превышающие предел устойчивости материала, предусмотренный при изготовлении лопатки. Поэтому сопротивление усталости турбинных лопаток является такой важной характеристикой при расчетах. Если ограничения, накладываемые аэродинамикой на величину сечения, делают невозможным достижение достаточно высокой частоты для конструкции с простой лопаткой, то лопатки необходимо закреплять вместе группами. В американских конструкциях большие лопатки турбин промежуточного давления собирались в группы посредством выточек, которые стыковались с соответствующими выточками соседних лопаток и соединялись сваркой. В Великобритании большие лопатки обычно собирались в группы и сшивались проволокой. В местах, где проволока проходит через выточки, вы-штампованные и проточенные в лопатках, лопатки спаивают твердым припоем. Более маленькие лопатки соединяют на наружном ободе, изготовленном из полосового материала с отверстиями, в которых заклепывают верхние лопатки.  [c.224]

Особая роль подшипников в проблеме надежности и экономичности современных крупных паровых турбин объясняется большими окружными скоростями на поверхностях скольжения, достигающих более 100 м/с, а также паровыми переменными силами, действующими на роторы и способными во взаимодействии с гидродинамическими силами в подшипниках вызывать недопустимые вибрации турбины. При столь больших окружных скоростях механические потери энергии в подшипнике становятся значительными, а это сказывается на общих энергетических показателях турбины.  [c.61]

Конструирование фундаментов, сохраняющих центровку турбин и демпфирующих колебания, было предметом исследования всех ведущих фирм, выпускающих мощные паровые турбины. С этой целью устанавливались пружинные виброизоляторы между верхней плитой и капителями несущих колонн. Это давало возможность облегчить нижнюю часть фундамента, уменьшить его осадку под действием вибрации и приблизить к турбине блочный щит.  [c.82]

ВИБРАЦИИ ПАРОВЫХ ТУРБИН  [c.244]

Проблема борьбы с вибрацией лопаток, роторов, подшипников, трубок конденсаторов, фундаментов и других элементов паротурбинной установки была одной из главных на всех этапах развития паровых турбин. Из опасения вибрационных поломок или недопустимых колебаний нередко принимались конструктивные решения даже в ущерб тепловой экономичности турбины. Эта проблема в целом и сейчас еще полностью не решена. Наименее изученным остается вопрос о силах, возбуждающих вибрацию лопаток и роторов и имеющих особое значение для турбин большой мощности.  [c.244]

Особый вид ПАС индуктируется из-за окружной неравномерности потока у концов лопаток. Причина этой неравномерности кроется в смещении оси ротора относительно оси статора. Этот вид ПАС был причиной многих неполадок новых мощных турбин во время пускового периода. Действующие на ротор ПАС росли по мере увеличения расхода пара ЦВД, и сопутствующие им низкочастотные вибрации даже ограничивали максимальную нагрузку на турбину ( пороговая мощность ). Эти новые нестационарные явления находятся в центре внимания конструкторов, и решению этой проблемы подчинены даже некоторые принципиальные стороны проектирования современных паровых турбин.  [c.244]

Еще не так давно автоматические защитные устройства паровых турбин ограничивались регулятором безопасности, предохраняющим турбину от опасного повышения числа оборотов, и атмосферным клапаном для предупреждения повышения давления в ее корпусе. Все остальные способы защиты осуществлялись машинистом вручную на основании показаний приборов, а также на слух (шум, стуки), на ощупь (вибрация, нагрев), на глаз (дым, течь).  [c.120]

После устранения мелких дефектов турбина была пущена. Вибрация осталась без изменений. Тогда приступили к проверке паропровода свежего пара. На участке от сепаратора пара до паровой коробки паропровод был совершенно исправен (что было видно по посто-  [c.10]

Поиск по проявлениям причин проводится следующим образом. По результатам отдельных измерений и исследований намечается возможная причина неполадки, которая затем проверяется и корректируется по свойственным только ей признакам. Например, турбина с противодавлением не развивает полной мощности. Показания приборов указывают на величину параметров свежего пара и противодавления, близкую к номинальной. Клапаны по указателю открыты полностью. Значит, вероятно, турбина занесена солями. В этом случае давление в регулирующей ступени должно быть максимально допустимым. Однако оно намного ниже и по характеристике (гл. 8) отвечает тому давлению, какое должно быть при нагрузке, указываемой ваттметром. Предполагают, что занесено солями паровое сито. Устанавливают дополнительный манометр за паровым ситом, но он указывает, что сопротивление сита не превышает нормального. Теперь остается предположить, что при открытых по указателю клапанах они в действительности не открыты полностью. Вскрывают паровую коробку и обнаруживают, что гайка, крепящая клапан на траверсе, отвернулась от вибрации ( 10-4), и один из клапанов закрыт.  [c.21]

В 1939 г. ЦКТИ с привлечением работников турбинных заводов были созданы нормативные материалы по расчету паровых турбин (по вибрации, регулированию, концевым и диафраг-менным уплотнениям). Эти работы представляли большой практический интерес для работгшков конструкторских бюро заводов и способствовали развитию научных исследований как непосредственно на заводах, так и в институтах.  [c.19]


При эксплуатации паровой турбины не должно возникать ситуаций, опасных для людей и окружающей среды. Основную опасность для людей представляют механическое разрушение турбины, пожары, в случае ее работы на одноконтурной АЭС — радиоактивное облучение, горячие поверхности турбины, шум, вибрация, контакт с токсичными огнестойкими жидкостями систем регулирования и смазки. Для окружающей среды основную опасность представляют выбросы масла из системы маслоснабже-ния, а также истечение или выбросы радиоактивного пара в машинный зал и из него в атмосферу.  [c.486]

Вибрацией называют колебательный процесс в механических системах. Колебательный процесс характеризуется таким движением материальной точки, при котором наблюдается периодическое прохождение этой точкой одного и того- же положения устойчивого равновесия. Понятия вибрация и механические колебания являются синонимами. Однако в технике принято называть одни колебательные процессы механическими колебаниями (например, колебание электрона на орбите, колебание маятникаит. п.), а другие —вибрациями (например, вибрация ставка при обработке деталей, вибра-.ция фундаментов сооружений и т. п.). Как правило, вибрациями в технике называют вредные колебательные процессы. Вибрация возникает в механизмах, приборах и их элементах, различных сооружениях вследствие несовершенства их конструкции. Она может появиться в результате периодических толчков, сотрясений, при больших ускорениях движущихся неуравновешенных масс, при периодическом изменении давления пара в паровых котлах и т. д. Значение вибра1 ,ии в технике очень велико. Явление вибрации необходимо учитывать при проектировании, производстве и эксплуатации зданий, судов, самолетов, металлорежущих и деревообрабатывающих станков, турбин, паровых котлов и т. д.  [c.164]

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. Гфи относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на которо.м установлен машинный агрегат, испытывает пиклически изменяют,иеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.  [c.351]

Наблюдается эрозийное повреждение трубок в местах ввода в конденсатор горячих потоков и в районе воздухоотсасывающих труб, а также механические повреждения (просечка, разрыв) оторвавшимися частицами лопаток турбины. Мерами борьбы с эрозийным износом, а также с вибрацией трубок от динамического воздействия парового потока является применение в верхних рядах трубного пучка, воспринимающих ударные действия пара и водяных капель, конденсаторных трубок с утолщенной стенкой. Можно также рас-клиновать периферийные (верхние) трубки конденсатора при помощи дубовых или металлических распорок между рядами трубок.  [c.51]

Корпус турбины подвергается наружному сжатию из-за разности атмосферного давления и разрежения в конденсаторе и выполняется в настоящее время обычно сварным из листов толщиной 8—15 мм. Для предотвращения деформации и уменьшения толщины листов он снабжается наружными ребрами, привариваемыми к корпусу. В верхней части корпуса, соприкасающейся с выхлопным патрубком турбины, ребра жесткости привариваются также с внутренней стороны. Внутри корпуса для повышения жесткости ввариваются распорные стержни и трубы. Для устранения вибрации трубок при эксплуатации и улучшения процесса теплообмена внутри корпуса устанавливаются промежуточные перегородки, привариваемые изнутри к корпусу. Крышки водяных камер по условиям эксплуатации делаются съемными и крепятся на болтах с помощью фланцев, привариваемых к корпусу (узел 5). Конденсаторы турбин мощностью до 50—100 мгзт обычно изготавливаются целиком в цехе. Конденсаторы установок большей мощности разбиваются на секцци, свариваемые между собой на монтаже. Так, конденсатор паровой турбины ЛМЗ мощностью 300 мгвт предусматривает расчленение на 24 секции, а конденсатор аналогичной установки ХТГЗ разделен на 6 секций. Для снижения трудоемкости работ на монтаже конденсатор обычно проходит на заводе контрольную сборку.  [c.203]

Свежий пар, поступающий в турбину, не должен содержать механических и химических примесей более, чем предусмотрено ПТЭ. При работе грязным паром сопла и лопатки изнашиваются быстрее, нарушается уравновешенность ротора, что вызывает увеличение вибрации турбины, проточная часть и паровые клапаны забиваются солями, в результате чего экономичность и мощность турбины снижаются, а осевое давление ротора увеличивается настолько, что вызывает повреждение упорного подшипника и аварию турбины. Особенно большую опасность представляет выделение накипи и солей на штоках клапанов, втулках или сальниках, так как при сбросе нагрузки турбины регулирующие и стопорный клапаны при срабатывании автомата безопасности остаются открытыми — зависают в открытом положении. В этом случае турбина и генератор могут пойти вразнос, что может вызвать тяжелую аварию турбины и генератора. Поэтому ни при каких обстоятельствах нельзя допускать длительной работы турбины с большим содержанием солей в свежем паре. Даже неболь шое загрязнение свежего пара солями представляет большую опасность, особенно при длительной работе турбины с постоянной нагрузкой. Необходимо не реже одного раза в смену (во время приемки) при нормальных параметрах свежего пара в присутствии сдающего смену, проверять подвижность штоков стопорных клапанов (свежего и отбо рного пара) кратковременным равномерным закрытием на 3—4 оборота и открытием их в прежнее положение. При этом обычно не происходит снижения числа оборотов турбины. Проверка по движ-ности штоков регулирующих клапанов производится некоторым изменением (перераспределением) нагрузки турбины (при параллельной работе) или незначительным изменением числа оборотов ее (при индивидуальной работе) синхронизатором турбины.  [c.93]

Новые задачи паротурбиностроения требуют расширения кинематических схем ступеней. Например, решение проблемы повышения нагрузки на турбинную ступень — одной из важнейших проблем при проектировании сверхмощных, а также полупи-ковых и особенно пиковых турбин (см. гл. V) —облегчается, если управлять градиентом степени реактивности. Применение ступеней со сниженным градиентом степени реактивности может способствовать росту к. п. д. проточной части, весьма ощутимому при повышенных радиальных зазорах над РК (см. гл. XII), и снижению аэродинамических сил, в частности возбуждающих низкочастотную вибрацию роторов мощных паровых турбин (см. гл. XIV). Эти задачи не всегда решаются методами, основанными на расчете цилиндрических потоков.  [c.189]


Вибрация, или упругие колебания, возникает в любой детали, если на нее периодически действует возмушаюшая сила и если для совершения колебаний нет препятствий. В паровой турбине причинами колебания агрегата, его деталей, а также присоединенных труб, площадок, фундамента, даже здания и грунта, могут быть  [c.111]


Смотреть страницы где упоминается термин Турбины паровые вибрация : [c.82]    [c.512]    [c.307]    [c.11]    [c.5]    [c.104]    [c.51]    [c.149]    [c.208]    [c.227]    [c.11]    [c.216]    [c.218]    [c.221]    [c.221]   
Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.204 ]



ПОИСК



Вибрация

Вибрация паровая

Турбина паровая

Турбины Паровые турбины

Турбины паровые

Турбины, вибрация



© 2025 Mash-xxl.info Реклама на сайте