Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы и собственных функций

Если Еп — /-кратно вырожденное собственное значение гамильтониана молекулы с собственными функциями F i, F 2,. ... .., тогда действие операции симметрии R на одну из этих функций должно переводить ее в линейную комбинацию этих I функций. Это утверждение следует из того, что функция, которая получается в результате применения операции R к любой из этих функций, соответствует тому же собственному значению Еп [см. (5.19) и обсуждение, следующее за этим уравнением] наиболее общая преобразованная функция является линейной комбинацией исходных функций.  [c.75]


Свойства симметрии. Вращательные собственные функции линейных многоатомных молекул (так же, как и двухатомных молекул) представляют собой гармонические функции, изображенные на фиг. 39 книги Молекулярные  [c.27]

Как н в двухатомных молекулах, вращательный уровень линейной многоатомной молекулы называется положительным или отрицательным, в зависимости от того, сохраняет или меняет свой знак полная собственная функция ф при отражении всех частиц (электронов и  [c.27]

Свойства симметрии и статистические веса. Как и в случае двухатомных и линейных многоатомных молекул, вращательные уровни симметричного волчка являются либо положительными , либо отрицательными ", в зависимости от того, меняет ли свой знак полная собственная функция при отражении всех частиц в начале координат или не меняет. Однако в данном случае  [c.38]

В качестве примера на фиг. 47 показаны нормальные колебания линейной молекулы типа XYZ (см. также фиг. 61). Нормальные колебания при любом числе атомов принадлежат к типам симметрии 2 и П (см. раздел 4 настоящей главы), однако собственные функции более высоких колебательных уровней для деформационных колебаний (колебания Vj молекулы типа XYZ па фиг. 47) могут относиться к типам симметрии 2]", Д, Ф,... (см. следующий подраздел). X /  [c.127]

Напомним, что также и для линейных молекул симметрии + или — из или а вращательных уровней зависят от симметрии полной собственной функции (без учета ядерного спина).  [c.437]

Попытаемся определить зависимость спина двухэлектронной системы от величины энергетического расщепления между синглетом и триплетом. Правда, способ нахождения такой зависимости более сложен, чем это необходимо для описания нашего простого случая, однако он играет фундаментальную роль при рассмотрении энергетики спиновых конфигураций в реальных твердых диэлектриках. Сначала следует отметить, что если два протона находятся далеко друг от друга, то основное состояние отвечает двум независимым атомам водорода. Следовательно, оно четырехкратно вырождено, так как у каждого электрона могут быть две ориентации спина. Рассмотрим теперь протоны, расположенные немного ближе друг к другу, так что появляется расщепление Е ф () четырехкратно вырожденного состояния, обусловленное взаимодействием между атомами. Это расщепление, однако, мало но сравнению с энергиями всех других возбужденных состояний двухэлектронной системы. При таких условиях указанные четыре состояния определяют многие основные свойства молекулы 2). Поэтому описание часто упрощают, совершенно пренебрегая состояниями, лежащими выше по энергии, и рассматривают молекулу как систему с четырьмя состояниями. Если мы будем описывать любое состояние молекулы как линейную комбинацию четырех низших состояний, то удобно построить оператор — так называемый спиновый гамильтониан, который обладает следующими свойствами. Собственные значения спинового гамильтониана для рассматриваемой совокупности четырех состояний совпадают с собственными значениями исходного гамильтониана, а его собственные функции определяют спин соответствующих состояний.  [c.294]


Шредингера на отдельные уравнения для каждого электрона, а электронные волновые функции при этом представляются в виде произведений одноэлектронных молекулярных орбиталей. При решении колебательно-вращательного уравнения Шредингера используются приближения жесткого волчка и гармонического осциллятора. Приближенное колебательно-вращательное уравнение получается разделенным, и каждая из собственных функций является произведением врай1,ательной волновой функции, зависящей от трех переменных, и колебательной волновой функции, которая в свою очередь является произведением волновых функций 3N — 6) гармонических осцилляторов, где М — число ядер в молекуле [для линейной молекулы вращательная волновая функция зависит от двух координат, а колебательная волновая функция — от (ЗЛ — 5) координат]. Все эти приближения принимаются феноменологически, исходя из свойств молекул, а не из абстрактного математического анализа имеющихся дифференциальных уравнений в частных производных.  [c.131]

Вырожденные типы симметрии. Как указывалось ранее, молекула, обладающая, по крайней мере, одной осью симметрии выше второго порядка, всегда имеет как вырожденные, так и невырожденные нормальные колебания (собственные функции). В этом случае, кроме типов симметрии, подобных разобранным выше мы имеем один или несколько вырожденных типов симметрии, обычно обозначаемых буквой Е, если они дважды вырождены, и буквой Р, если они трижды вырождены В то время как влияние различных операций симметрии на невырожденные колебания или собственные функции может описываться просто множителем - -1 и — 1, такой способ описания не может быть применен в случае вырожденных колебаний и собственных функций, так как они в общем случае переходят в линейную комбинацию согласно уравнзнию (2,62). Можно показать, что для характеристики поведения вырожденного колебания или собственной функции достаточно указать для каждой операции симметрии значение суммы  [c.122]

В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]

Желая по возможности исключить проблему электронной корреляции, зателшяющую результаты расчетов методами МО и ВС, Моф-фит [360J перенес акцент с молекулярных орбиталей на собственные функции атомов, составляющих систему. j Tb предлагаемой им теории атомов в молекуле (AIM) заключается в том, что состояние совокупности изолированных атомов пли ионов рассматривается как невозмущенное, а взаимодействия, возникающие при их сближении, трактуются как возмз щения. В основе такого подхода лежит факт малости энергии атомизации молекулы сравнительно с ее полной энергией. Метод AIM допускает использование экспериментальных значений энергии атомных и ионных состояний. Волновая функция системы, как и в других лгетодах, выражается через линейные комбинации атомных функций.  [c.138]


По этим уравнениям из значений мгновенных координат ядер в пространстве можно определить углы 0 и и тем самым про-странствениую ориентацию оси z. Так как ориентация осей х и у несущественна с точки зрения минимизации колебательного углового момента [см. формулу (7.122)], отсутствует и соответствующее условие Эккарта, задающее угол Эйлера %. Обычно угол Эйлера х выбирается постоянным. Заметим, что в гл. 7 при выводе гамильтониана двухатомной молекулы мы выбирали X = 0°. В наиболее общем случае мы можем выбрать угол х как функцию углов 0 и Тогда элементы матрицы направляющих косинусов [см. (7.52)] будут зависеть всего от двух независимых переменных 0 и Из-за отсутствия угла % в качестве вращательной переменной компоненты углового момента в системе осей, фиксированных в линейной молекуле, не удовлетворяют коммутационным соотношениям (7.147). Коммутационные соотношения становятся более сложными [см., например, (7.84) и (7.85)], и матричные элементы компонент углового момента и вращательные собственные функции отличаются от соответствующих величин для нелинейной молекулы, приведенных в табл. 8.1. Из-за наличия лишних угловых множителей [например, множителя sin 0 во втором члене выражения (7.94)]  [c.365]

Если линейная молекула принадлежит к точечной группе Dooh, т- е. имеет центр симметрии (как, например, молекула С Н ), то, помимо свойств симметрии по отношению к инверсии, появляются свойства симметрии по отношению к перестановке одинаковых ядер—собственная функция может быть симметричной или антисимметричной. Полная собственная функция < системы (без учета собственной функции спина ядра) остается неизменно или меняет свой знак при одновременной перестановке всех ядер, расположенных по одну сторону от центра, с ядрами, расположенными по другую сторону. Мы называем соответствующие вращательные уровни симметричными или антисимметричными. Ниже будет показано, что точно так же, как и в случае двухатомных молекул, имеющих одинаковые атомы, либо положительные вращательные уровни являются симметричными, а отрицательные—-антисимметричными, либо отрицательные уровни являются симметричными, а положительные—-антисимметричными. Первая возможность осуществляется для симметричных электронных состояний (состояний при отсутствии колебаний для этого случая на фиг. 4 указана симметрия буквами в скобках.  [c.27]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]

Свойства симметрии вращательных уровней. Как мы уже видели в гл. I, раздел 1, вращательные уровни линейных молекул являются положительными или отрицательными в зависимости от того, остается ли при мнверснгг полная собственная функция неизменной или меняет свой знак для наинизшего колебательного уровня (как в гл. I) и для всех полносимметричных возбужденных колебательных уровней (принадлежащих к типу симметрии И ) электронного основного состояния. Четные вращательные уровни являются положительными, нечетные — отрицательными (см. фиг. 4). Это справедливо, если предполагать, что электронное основное состояние является также полносимметричным. Для колебательных уровней (совершенно так же, как и для электронных состояний двухатомных молекул) четные колебательные уровни являются отрицательными, нечетные—-положительными. Для колебательных уровней Б, Д,... (как и для электронных состояний П, Д,... двухатомных молекул) каждому значению соответствует положительный и отрицательный уровни, очень мало различающиеся величиной энергии (см. ниже), порядок которых чередуется  [c.400]

Классификация электронных состояний, В уравнении Шредингера для движения электронов (1,5) величина Уе обозначает потенциальную энергию электронов в поле ядер (неподвижных). Как указано выше, в первом приближении (которое, как правило, является хорошим) мы можем рассматривать движение электронов при равновесном положении ядер. Поэтому функция Уе У 1меет ту же симметрию, что и молекул(а в определенном электронном состоя- ти. Таким образом, уравнение Шредингера, описывающее электронное ч движение, не изменяется под действием операции симметрии. Следовательно, 4 лектронная волновая функция невырожденного состояния может быть 4 олько симметричной или антисимметричной по отношению к каждой из оне-. Ч аций симметрии, допускаемых симметрией молекулы в равновесном ноло- ении, т. е. она либо остается неизменной, либо только меняет знак. В случае вырожденных состояний собственная функция может превращаться только в линейную комбинацию двух (или более) вырожденных волновых функций, так что квадрат волновой функции, представляющий собой электронную плотность, остается неизменным. Различные волновые функции могут вести себя по-разному по отношению к различным операциям симметрии данной точечной группы но, как правило, не все элементы симметрии точечной группы независимы друг от друга, поэтому возможны лишь определенные комбинации поведения волновых функций по отношению к операциям симметрии. Такие комбинации свойств симметрии называются типами симметрии (см. [23], стр. 118). На языке теории групп это неприводимые представления ])ассматриваемой точечной группы. Каждая электронная волновая функция, а следовательно, и каждое электронное состояние принадлежат к одному из возможных типов симметрии (представлений) точечной группы молекулы  [c.17]


Действие возмущения, обусловленного межмолекулярным взаимодействием (его мы будем описывать средним электрическим потенциалом У), проявляется в частичном или полном снятии этого вмрождения и в ввдо-ишмененяи формы вращательных волновых функций, которые описывают ориентацию молекулы. Если энергия возмущения V много меньше разности между энергиями различныж вращательных состояний свободной молекулы, то в нулевом приближении собственные функции будут заменяться 2/ + 1 линейными комбинациями  [c.211]

Из органической хим и известно, что некоторые соединения (например, бензол) ведут себя так, как будто они обладают двумя различными структурами (динамическая изометрия). Волновая механика объясняет это следук>щим образом если вещество может иметь две или несколько электронных конфигураций, то наименьшая энергия не соответствует какому-либо одному. состоянию, а является линейной комбинацией функций отдельных состояний. Это иногда выражается так молекула как бы вибрирует с большой частотой между отдельными состояниями, так что в среднем она находится в каком-то промежуточном состоянии. Однако при этом можно легко впасть в заблуждение, поэтому лучше рассматривать молекулу как находящуюся в новом состоянии, являющемся характеристикой процесса резонанса, который приводит к образованию нового вида молекулы со своей собственной формой электронного облака и со свойствами, отличны.ми от свойств структур, между которыми осуществляется резонанс. Резонансная связь интересна тем, что она предполагает в некоторых определенных соединениях возможность существования отдельных электронов, которые не связаны с индивидуальными связями, а принадлежат всей молекуле и перемещаются внутри нее. Эта подвиж ность представляет интерес в связи с тем, что, как будет показано на стр. 32, она теоретически соответствует связям в металлах вследствие наличия сил подобной же природы.  [c.25]


Смотреть страницы где упоминается термин Линейные молекулы и собственных функций : [c.71]    [c.364]    [c.64]    [c.366]    [c.117]    [c.118]    [c.305]    [c.280]    [c.318]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.127 , c.133 ]



ПОИСК



Вращательные собственные функции линейных молекул

Линейные молекулы

Линейные функции —

Собственные функции

Собственные функции собственные функции)



© 2025 Mash-xxl.info Реклама на сайте