Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращательные собственные функции линейных молекул

Свойства симметрии. Вращательные собственные функции линейных многоатомных молекул (так же, как и двухатомных молекул) представляют собой гармонические функции, изображенные на фиг. 39 книги Молекулярные  [c.27]

Как н в двухатомных молекулах, вращательный уровень линейной многоатомной молекулы называется положительным или отрицательным, в зависимости от того, сохраняет или меняет свой знак полная собственная функция ф при отражении всех частиц (электронов и  [c.27]


Если любая многоатомная молекула имеет одинаковые ядра, то полная собственная функция (без учета спина ядра) невырожденного вращательного уровня при перестановке двух одинаковых ядер должна лишь оставаться неизменной либо может менять только знак. В случае симметричных линейных молекул точечной группы (как  [c.28]

Свойства симметрии и статистические веса. Как и в случае двухатомных и линейных многоатомных молекул, вращательные уровни симметричного волчка являются либо положительными , либо отрицательными ", в зависимости от того, меняет ли свой знак полная собственная функция при отражении всех частиц в начале координат или не меняет. Однако в данном случае  [c.38]

Напомним, что также и для линейных молекул симметрии + или — из или а вращательных уровней зависят от симметрии полной собственной функции (без учета ядерного спина).  [c.437]

Волновое уравнение для жесткого ротатора (8.33) определяет вращательные собственные функции /, k, т) (8.111) для молекулы типа симметричного волчка. Для молекулы типа асимметричного волчка вращательные собственные функции являются линейными комбинациями функций симметричного волчка (см. задачу 8.3). Функции симметричного волчка зависят от углов Эйлера (0, ф, х), н для выяснения свойств преобразовапня этих функций сначала следует определить свойства преобразований углов Эйлера. Чтобы определить действие элемента группы МС на вращательную функцию, заменим каждый элемент группы  [c.258]

По этим уравнениям из значений мгновенных координат ядер в пространстве можно определить углы 0 и и тем самым про-странствениую ориентацию оси z. Так как ориентация осей х и у несущественна с точки зрения минимизации колебательного углового момента [см. формулу (7.122)], отсутствует и соответствующее условие Эккарта, задающее угол Эйлера %. Обычно угол Эйлера х выбирается постоянным. Заметим, что в гл. 7 при выводе гамильтониана двухатомной молекулы мы выбирали X = 0°. В наиболее общем случае мы можем выбрать угол х как функцию углов 0 и Тогда элементы матрицы направляющих косинусов [см. (7.52)] будут зависеть всего от двух независимых переменных 0 и Из-за отсутствия угла % в качестве вращательной переменной компоненты углового момента в системе осей, фиксированных в линейной молекуле, не удовлетворяют коммутационным соотношениям (7.147). Коммутационные соотношения становятся более сложными [см., например, (7.84) и (7.85)], и матричные элементы компонент углового момента и вращательные собственные функции отличаются от соответствующих величин для нелинейной молекулы, приведенных в табл. 8.1. Из-за наличия лишних угловых множителей [например, множителя sin 0 во втором члене выражения (7.94)]  [c.365]


Шредингера на отдельные уравнения для каждого электрона, а электронные волновые функции при этом представляются в виде произведений одноэлектронных молекулярных орбиталей. При решении колебательно-вращательного уравнения Шредингера используются приближения жесткого волчка и гармонического осциллятора. Приближенное колебательно-вращательное уравнение получается разделенным, и каждая из собственных функций является произведением врай1,ательной волновой функции, зависящей от трех переменных, и колебательной волновой функции, которая в свою очередь является произведением волновых функций 3N — 6) гармонических осцилляторов, где М — число ядер в молекуле [для линейной молекулы вращательная волновая функция зависит от двух координат, а колебательная волновая функция — от (ЗЛ — 5) координат]. Все эти приближения принимаются феноменологически, исходя из свойств молекул, а не из абстрактного математического анализа имеющихся дифференциальных уравнений в частных производных.  [c.131]

Если линейная молекула принадлежит к точечной группе Dooh, т- е. имеет центр симметрии (как, например, молекула С Н ), то, помимо свойств симметрии по отношению к инверсии, появляются свойства симметрии по отношению к перестановке одинаковых ядер—собственная функция может быть симметричной или антисимметричной. Полная собственная функция < системы (без учета собственной функции спина ядра) остается неизменно или меняет свой знак при одновременной перестановке всех ядер, расположенных по одну сторону от центра, с ядрами, расположенными по другую сторону. Мы называем соответствующие вращательные уровни симметричными или антисимметричными. Ниже будет показано, что точно так же, как и в случае двухатомных молекул, имеющих одинаковые атомы, либо положительные вращательные уровни являются симметричными, а отрицательные—-антисимметричными, либо отрицательные уровни являются симметричными, а положительные—-антисимметричными. Первая возможность осуществляется для симметричных электронных состояний (состояний при отсутствии колебаний для этого случая на фиг. 4 указана симметрия буквами в скобках.  [c.27]

Свойства симметрии вращательных уровней. Как мы уже видели в гл. I, раздел 1, вращательные уровни линейных молекул являются положительными или отрицательными в зависимости от того, остается ли при мнверснгг полная собственная функция неизменной или меняет свой знак для наинизшего колебательного уровня (как в гл. I) и для всех полносимметричных возбужденных колебательных уровней (принадлежащих к типу симметрии И ) электронного основного состояния. Четные вращательные уровни являются положительными, нечетные — отрицательными (см. фиг. 4). Это справедливо, если предполагать, что электронное основное состояние является также полносимметричным. Для колебательных уровней (совершенно так же, как и для электронных состояний двухатомных молекул) четные колебательные уровни являются отрицательными, нечетные—-положительными. Для колебательных уровней Б, Д,... (как и для электронных состояний П, Д,... двухатомных молекул) каждому значению соответствует положительный и отрицательный уровни, очень мало различающиеся величиной энергии (см. ниже), порядок которых чередуется  [c.400]

В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]


Действие возмущения, обусловленного межмолекулярным взаимодействием (его мы будем описывать средним электрическим потенциалом У), проявляется в частичном или полном снятии этого вмрождения и в ввдо-ишмененяи формы вращательных волновых функций, которые описывают ориентацию молекулы. Если энергия возмущения V много меньше разности между энергиями различныж вращательных состояний свободной молекулы, то в нулевом приближении собственные функции будут заменяться 2/ + 1 линейными комбинациями  [c.211]


Смотреть страницы где упоминается термин Вращательные собственные функции линейных молекул : [c.364]    [c.64]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.27 , c.400 ]



ПОИСК



Вращательные линейных молекул

Вращательные собственные функции

Линейные молекулы

Линейные молекулы и собственных функций

Линейные функции —

Собственные функции

Собственные функции собственные функции)



© 2025 Mash-xxl.info Реклама на сайте