Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология алюминия и его сплавов

Антикоррозионная бумага марки ХЦА 14-80 на основе хромата циклогексиламина обеспечивает защиту от атмосферной коррозии меди и ее сплавов, стали различных марок, алюминия и его сплавов на срок 3—5 лет. Однако бумага марки ХЦА не защищает цинк и кадмий, что является наряду с относительно высокой токсичностью существенным недостатком указанного вида антикоррозионной бумаги, препятствующим ее использованию для консервации и упаковки большинства современных изделий, для которых широко используется кадмирование поверхности. Технология производства антикоррозионной бумаги ХЦА практически не отличается от таковой для бумаги марки НДА и имеет присущие последней недостатки, связанные с нанесением хромата циклогексиламина на  [c.123]


Техника и технология дуговой сварки в среде защитных газов алюминия и его сплавов (магния и его сплавов, меди и ее сплавов, никеля и его сплавов, титана и его сплавов, тугоплавких металлов).  [c.484]

По данным расчета [232], давление водорода в порах после длительного отжига алюминия при 450—500° С составляет в среднем 10 атм. Поскольку при существующей технологии производства алюминия и его сплавов содержание водорода превышает критическое, термическая  [c.165]

Благодаря ряду положительных свойств алюминий [7, И, 27, 51, 132, 221] в настоящее время очень широко применяют в технике, и область его использования неизменно растет. Сегодня по объему добычи и использования в промышленности алюминий стоит на втором месте после железа. Этому способствует также достаточно большое содержание алюминиевых бокситов в земной коре и хорошо освоенная технология получения (электролиз расплава) и обработки алюминия. Основные объекты применения алюминия и его сплавов — самолетостроение, авиационное моторостроение и ракетная техника. Современный самолет более чем наполовину изготовлен из алюминиевых сплавов. Значительное количество алюминия используют в химической, пищевой и электропромышленности, а также транспорте, архитектуре и других областях.  [c.258]

Книга предназначена для инженерно-технических работников цехов покрытий, а также может быть полезной для технологов и конструкторов, работающих в области проектирования металлоконструкций из алюминия и его сплавов.  [c.2]

Глубокое анодирование. Сравнительно новым перспективным направлением в технологии получения анодных пленок на алюминии и его сплавах является разработка условий для создания толстых (порядка 30— 300 мк) анодных покрытий.  [c.120]

Перечисленные факторы влияют на технологию газовой сварки. При сварке алюминия и его сплавов не допускается окислительное пламя, так как оно способствует  [c.142]

Из применяющихся в мащиностроении способов анодной обработки алюминиевых сплавов наиболее полно исследованы электрохимическое полирование и анодирование [178]. Закономерности электрохимической размерной обработки алюминия и его сплавов изучены недостаточно это относится и к технологии процесса, и к механизму анодного растворения при высоких плотностях тока. Наиболее щироко представлены данные по обрабатываемости алюминиевых сплавов методом ЭХО в хлоридных и нитратных электролитах [28, 29, 45, 61 ]. Качество обработанной поверхности после ЭХО в хлоридных электролитах, как пра-  [c.57]

Технология покрытия алюминия и его сплавов  [c.114]


Серебрение алюминия и его сплавов для снижения переходного сопротивления контактных деталей осуществляется применением технологии никелирования с последующей термообработкой. Применение подслоя никеля при осаждении серебра позволяет избежать возможность отслаивания покрытия и повысить прочность сцепления с поверхностью алюминия.  [c.115]

Плазменно-дуговую резку целесообразно применять при обработке металлов, которые трудно или невозможно резать другими способами, или когда плазменно-дуговая резка оказывается наиболее экономичной, или обеспечивает скорости резки, согласующиеся с принятыми в технологии обработки того или иного изделия. Плазменно-дуговой резкой обрабатывают алюминий и его сплавы медь и ее сплавы нержавеющие высоколегированные стали низкоуглеродистую сталь чугун магний и его сплавы титан. Наиболее экономична резка алюминия и его сплавов, меди и высоколегированных (нержавеющих) сталей.  [c.215]

ТЕХНОЛОГИЯ ОКСИДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ  [c.67]

Наиболее характерным свойством чистого алюминия является его малый удельный вес (у=2,7) и низкая температура плавления (657°). По сравнению с железом, у которого 7=7,8, а температура плавления 1535°, алюминий имеет почти в 3 раза более низкий удельный вес, вследствие чего алюминий и его сплавы широко применяются в авиастроении. Благодаря более низкой температуре плавления алюминия по сравнению с железом технология обработки алюминия и его сплавов резко отличается от технологии обработки стали.  [c.396]

На сварку листовых и оболочковых конструкций химического аппаратостроения распространяется отраслевая нормаль ОН-26-01-71—68. Нормаль регламентирует конструктивные элементы подготовки кромок различных типов сварных соединений из углеродистой, низколегированной, высоколегированной, коррозионностойкой и двуслойной сталей, алюминия и его сплавов, меди, латуни, никеля и титана, задает рекомендуемую технологию различных способов сварки и соответствующие присадочные металлы, электроды, флюсы, инертные газы и пр. Параметры сварки, рекомендуемые нормалью, геометрические и физические величины, определяющие качественное протекание процесса, подлежат контролю как перед сваркой, так и в процессе сварки. Все 100% длины стыков проверяют непосред-  [c.233]

Чистые металлы и эвтектические сплавы не имеют эффективного интервала кристаллизации они затвердевают практически при постоянной температуре. Однако горячие трещины образуются при сварке и этих материалов. Основной причиной их охрупчивания является локализация деформации в результате концентрации растягивающих напряжений по структурно несовершенным границам зерен. Экспериментальные трудности определения нижней границы температурного интервала хрупкости и деформаций металла в процессе его кристаллизации при сварке затрудняют расчетное определение возможности появления горячих трещин в реальных сварных соединениях. Для практической оценки склонности сварных соединений к образованию горячих трещин обычно используют результаты сравнительных испытаний, полученные при сварке специальных технологических образцов, которые изготовлены из материала свариваемой конструкции и имитируют ее соединения. Установленные для каждого такого образца размеры и технология сварки обеспечивают соединению условия, необходимые для образования горячих трещин. Стойкость сварных соединений алюминия и его сплавов против образования горячих трещин чаще всего определяют по результатам сварки технологических образцов  [c.77]

Значительно сложнее дело обстоит с составляющей Гдл электрического сопротивления оксидной пленки. Для условий контактной точечной сварки эта величина практически является неопределенной переменной. Существующие литературные источники дают некоторые характеристики оксидов, но, к сожалению, измеренные в статическом состоянии и при определенной технологии изготовления оксида. Ничего подобного при точечной сварке нет. Электрические характеристики пленок на свариваемом металле неопределенны и зависят от структуры размеров и времени существования пленок с момента зачистки. Этот последний фактор определяет интенсивность экзоэлектронной эмиссии и, следовательно, косвенно влияет на удельное сопротивление пленки. Для оксидных пленок в условиях точечной сварки большинства металлов (кроме алюминия и его сплавов) можно уверенно считать только одну зависимость достоверной — это уменьшение удельного сопротивления с увеличением температуры. Мало того, можно считать, что при плавлении металла оксидные пленки растворяются в расплаве, и тогда их сопротивление вообще можно не учитывать. Исходя из такого рода соображений, примем  [c.105]


УЗ пайка и лужение значительно упрощают технологию облуживания и панки алюминия и его сплавов, титана, керамики (пьезокерамики), стекла, ферритов, повышают качество и прочность соединений. Можно назвать следующие примеры применения рассмотренных процессов лужение и пайка различных проволок—выводы к конденсаторам и сопротивлениям, провода термопар, сращивание алюминиевых кабелей припайка клемм и выводов заземления к проводам и кожухам, выполненным из алюминиевых сплавов пайка крепежных лепестков и отводов к стеклу, керамике, ферритам, полупроводниковым материалам исправление дефектов в алюминиевых отливках и пайка (лужение) деталей из силумина, титана, нержавеющей стали, чугуна и т. д.  [c.156]

Наряду с разработкой и освоением рациональной технологии производства ядерного топлива большое значение для развития атомной техники имеют конструкционные материалы, применяемые в производстве специального промышленного и исследовательского оборудования. Помимо обычных требований механической прочности, теплопроводности, жаростойкости, коррозионной, эрозионной стойкости и т. д. к ним предъявляются специфические, определяемые особенностями атомной техники требования радиационной стойкости, необходимой степени поглощения нейтронов в зависимости от производственного назначения материала и пр. С учетом этих требований выбирались и изучались различные марки стали для элементов конструкции атомных реакторов, искусственного графита для элементов систем замедления и отражения нейтронов.в активной зоне реакторов, алюминия для защитных оболочек твэлов, предотвращающих возникновение химической реакции между химически несовместимыми урановыми сердечниками твэлов и теплоносителем (например, водой), бетона для нужд противорадиационной защиты и т. д. Применительно к этим же требованиям отечественной промышленностью освоены в производстве новые конструкционные материалы, ранее получавшиеся лишь в крайне ограниченных количествах на лабораторных установках — тяжелая вода, бериллий, цирконий и его сплавы и др.  [c.163]

Наиболее характерные свойства чистого алюминия — небольшая илотность у —2,7) н низкая температура плавления (660°С). По сравнению с железом, у которого у = 7,8, а Т л = = 1535°С, алюминий имеет иочти в три раза более низкую плотность, вследствие чего алюминий и его силавы широко применяют там, где малая плотность и большая удельная прочность (an/v) имеют важное значение. Благодаря более низкой температуре плавления алюминия по сравнению с железом технология обработки алюминия и его сплавов резко отличается от технологии обработки стали.  [c.565]

Таким образом, наиболее склонен к порообразованию алюминий и его сплавы. В сварочной технологии на возникновение пор влияет время пребывания сварочной ванны в жидком состоянии, что зависит от скорости сварки. При малой скорости сварки алюминия водород успевает покинуть ванну и наплавленный металл будет плотным, при больших скоростях сварки (Исв>50м/ч) водород не успевает выделиться из кристаллизующегося металла и образовать поры, а при скорости сварки 20 м/ч обычно возникают поры. При сварке алюминия и его сплавов типа АМгб требуются особые меры для очистки кромок свариваемых изделий и тщательная подготовка электродной проволоки, а также использование аргона, имеющего минимальную влажность (Г. Д. Никифоров).  [c.346]

Свойства паяных соединений в опре-деляющей степени зависят от количества жидкой фазы в зазоре между соединяемыми поверхностями деталей. При капиллярной пайке применяют зазоры от сотых до десятых долей миллиметра в зависимости от свойств припоя, паяемого металла, конструктивных факторов изделия, технологии пайки. Например, при пайке железа и углеродистой стали медью в газовой атмосфере рекомендуются зазоры порядка 0,1 мм, так как в этом случае стойкость окисиой пленки на паяемом металле и припое невелика, жидко-текучесть меди высокая и практически не меняется в процессе пайки. При пайке алюминия и его сплавов припоями на основе алюминия зазор дол-  [c.305]

На склонность алюминия и его сплавов к межкристаллитно-му разрушению особенно влияют примесные элементы и сегрегации в зоне границ кристаллитов сплава ф32, с. 187]. Так, небольшие добавки меди заметно повышают межкристаллитную коррозию алюминиевых сплавов. Вероятность межкристаллит-ного разрушения можно понизить соблюдением правильной технологии производства металла и выбором правильного режима термической обработки.  [c.54]

Контактно-реактивная к прессовая пайка. В последние годы интенсивно развивалась конта ктно-реактивная пайка алюминия и его сплавов. Одна из наиболее старых технологий — пайка с применением больших давлений для удаления жидкой эвтектики из зазора использована при разработке способа Al oa-260 [181 260  [c.260]

Поэтому прессформы из легкоплавких металлов, в частности из алюминия и его сплавов, находят широкое применение на некоторых заводах страны. В результате внедрения таких прессформ на 50% сократилось применение ручного слесарного труда, так как форма матрицы достигается путем холодного выдавливания. Усилие выдавливания при этом требуется во много раз меньше, чем на стали. Кроме того, отпали такие операции как подготовка и обработка под закалку, зака.чка, обработка после закалки (шлифование фигуры до размера, полирование и хромирование). Таким образом, технология изготовления прессформ упростилась и ускорилась.  [c.191]

Особенностью технологии хромирования изделий из алюминия и его сплавов является совокупность подготовительных операций, обеспечивающих удаление окисных пленок с поверхности и получение прочного сцепления покрытия с основным металлом детали. Хромирование осуществляется в обычном по составу и режиму электролите и обеспечивающем получение блестящих хромовых покрытий. (Последовательность технологнческ1 х операций при покрытии алюминия и их описание приведены в гл. УП1 настоящего издания.)  [c.171]


Жидкий цинковый припой хорошо смачивает посеребренную поверхность алюминия. В некоторых случаях при пайке алюминия и его сплавов применяются промежуточные покрытия с температурой плавления ниже температуры пайки. Так, например, после лужения поверхности алюминия или его сплава припоями П200А или Ш50А пайка припоями 34А, ПСр5АКц или эвтектическим силумином может быть выполнена без флюсов в среде проточного аргона или воздуха. При этом припой, уложенный у зазора, вполне удовлетворительно затекает в зазор между облу-женными деталями. По данным Никитинского А. М. и Лашко С, В., прочность и коррозионная стойкость соединений из сплава АМц, паянных по такой технологии, мало отличается от прочности и коррозионной стойкости соединений, паянных припоем 34А с флюсом 34А.  [c.285]

П е р л и и И. Л., К о ч и ш И. Напряжения трения на боковой поверхности контейнера при прессовании сплавов на алюминиевой основе. Сб. Металловедение и обработка цветных металлов и сплавов , М,, Металлургиздат, 1957 О величине рабочих напряжений при прессовании сплошных круглых профилей из алюминия и его сплавов, Сб. трудов Минцветметзолота № 29. Технология цветных металлов. М Металлургиздат, 1958,  [c.216]

Институтом электросварки АН УССР им. Е. О. Патона разработана технология и высокопроизводительные устройства для автоматической приварки на шовных машинах стальных корытообразных ребер к стальным трубкам. Такая поверхность теплообмена может быть применена для работы при высоких температурах, не допустимых для труб из алюминия и его сплавов. Приварка ребер на шовных машинах обеспечивает хороший тепловой контакт ребер и есущих трубок. Кремневым, Зозулей и Хавиным [33] было произведено исследование теплообмена и термического сопротивления стальных трубо,к диаметром = 16 мм, несущих по окружности 8—16 продольных гладких стальных ребер толщиной 0,4 мм и высотой 12 мм. Трубки располагались в корпусе диаметром 42,6 мм. В интервале значений Ре = 5000 20 ООО при обтекании воздухом  [c.22]

В промышленности также находит широкое применение точечная сварка алюминия и его сплавов. Существенным в технологии точечной сварки этих металлов является очистка их поверхности от пленки окиси алюминия, которая, являясь тугоплавкой (температура плавления около 2050°), препятствует получению хорошего соединения. Очистка алюминия и его сплавов может производиться как механическим путем (стальной щеткой или наждачной бумагой № 00 или 0), так и травлением в смеси серной и хромовой кислот. В последнем случае необходим очень тщательный конт роль, вследствие чего химическая очистка применима, главным образом в крупном производстве. Для сварки алюминия и его сплавов требуются машины большой мощности, так как сварка ведется на жестких режимах. Более устойчивые результаты получаются в случае, когда машины оборудованы синхронным игнитронным прерывателем, а на-прялсение сети, питающей машину, достаточно устойчиво. При  [c.333]

Аналогично оксидным пленкам на черных металлах характеристика оксидных пленок на алюминии и его сплавах определяется их назначением и технологией их образования. Так, анодное оксидирование в,, 15—20-процентном растворе серной кислоты применяется главным образом для защиты от коррозии и в целях декоративной отделки. При выдержке в 15—20 мин толщина оксидной пленки составляет 5—7 мк и обычно не проверяется. В связи с тем что непропитанная пленка имеет пористость порядка 20— 30%, ее всегда заполняют. В простейшем случае заполнение осуществляется путем киг ячения в дистиллированной воде либо пропитыванием раствором хромпика, но чаще всего пропитыванием органическими красителями. Поэтому цвет оксидной пленки до пропитки не контролируется. Приемка оксидированных деталей до пропитки производится лишь по следующим показателям  [c.133]


Смотреть страницы где упоминается термин Технология алюминия и его сплавов : [c.3]    [c.167]    [c.114]    [c.82]    [c.304]    [c.104]    [c.323]    [c.173]    [c.256]    [c.113]    [c.942]    [c.227]   
Сварка Резка Контроль Справочник Том1 (2004) -- [ c.589 ]



ПОИСК



Алюминий и сплавы алюминия

Сплав алюминия

Способы и технология сварки алюминия и его сплавов

Технология обработки сплавов алюминия и магния

Технология оксидирования алюминия и его сплавов

Технология покрытия алюминия и его сплавов



© 2025 Mash-xxl.info Реклама на сайте