Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы тепловые при сварке дуговой

Процессы тепловые при сварке дуговой 55—57 лазерной 59—60 электроннолучевой 59 электрошлаковой 57—59 Процесс сварки, схема И—14 Процессы физико-металлургические при сварке плавлением 32—103 в защитных газах 77—81 дуговой 32—44 лазерной 52—54 под флюсом 76—77 покрытыми электродами 75—76, 308—314 электроннолучевой 49—52 электрошлаковой 44—49 Пушки электроннолучевые, системы 50—51  [c.762]


При сварке плавлением металл свариваемых частей в месте сварки расплавляется, образуя общую жидкую ванну. После затвердевания жидкого металла образуется сварной шов, структура металла которого аналогична структуре литого металла. Сварка плавлением по виду источника тепловой энергии делится в основном на электродуговую и газовую. Наиболее широко применяется электрическая дуговая сварка, являющаяся основным технологическим процессом создания неразъемных соединений деталей машин и металлоконструкций.  [c.449]

Распределение тепла при сварке. Расплавление основного металла при дуговых процессах сварки осуществляется под действием тепла, выделяемого электрической дугой, а при электрошлаковой сварке за счет тепла, выделяющегося при прохождении тока через электропроводную шлаковую ванну. Тепловая мощность сварочной дуги или шлаковой ванны зависит от электрических параметров режима сварки и подсчитывается по формуле  [c.18]

Чтобы сварить две детали, надо расплавить их в месте соединения, применив концентрированный источник тепловой энергии. Таким источником при электрической дуговой сварке является электрическая сварочная дуга—длительный мощный разряд электрического тока в смеси газов. Если газ не содержит электрически заряженных частиц — электронов и ионов,— он не проводит электрический ток. Как только в газе появляются электроны и ионы, он становится проводником тока. Процесс образования в газе заряженных частиц называется ионизацией. Газ, содержащий заряженные частицы, называется ионизированным.  [c.12]

В чем же сущность этой технологии Напомним, что плазма — это ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Ионизация газа может произойти, например, при его нагреве до высокой температуры, в результате чего молекулы распадаются на составляющие их автоматы, которые затем превращаются в ионы. Плаз менная обработка (резка, нанесение покрытий, наплавка, сварка) осуществляется плазмой, генерируемой дуговыми или высокочастотными плазмотронами. Эффект достигается как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью). Плазменную резку успешно применяют при обработке хромоникелевых и других легированных сталей, а также меди, алюминия и др5 гих металлов, не поддающихся кислородной резке. Большая производительность и высокое качество плазменной резки не только дают возможность эффективно использовать этот прогрессивный процесс на автоматических линиях, но и позволяют исключить ряд до-  [c.55]


Все датчики и другие устройства сварочного оборудования должны быть пригодны для работы в условиях сварочного процесса характеризуемого, например при дуговой сварке, повышенной запыленностью, загазованностью, близостью к источникам теплового и светового излучения, сильных электромагнитных полей в широком диапазоне частот. Следует отметить, что в настоящее время отсутствуют отработанные технические решения по многим перечисленным датчикам.  [c.32]

При одинаковых материалах ток почти не выпрямляется, выпрямление тока в сварочной дуге называется составляющей постоянного тока, которая при аргонодуговой сварке алюминия отрицательно действует на процесс. Устойчивость горения сварочной дуги, питаемой переменным током, ниже, чем дуги, питаемой постоянным током. Это объясняется тем, что в процессе перехода тока через нуль и изменения полярности в начале и конце каждого полупериода дуга угасает. В момент угасания дуги снижается температура дугового промежутка, вызывающая деионизацию газов столба дуги. Одновременно с этим падает и температура активных пятен. Температура особенно падает на том активном пятне, которое расположено на поверхности сварочной ванны, вследствие отвода тепла в изделие. В связи с тепловой инерционностью процесса падение температуры несколько отстает по фазе от перехода тока через нуль. Зажигание дуги из-за пониженной ионизации дугового промежутка в начале каждого полупериода возможно только при повышенном напряжении между электродом и изделием, называемом пиком зажигания. Если катодное пятно находится на основном металле, то в этом случае величина пика зажигания несколько выше. На величину пика зажигания влияет эффективный потенциал ионизации чем больше эффективный потенциал ионизации, тем выше должен быть пик зажигания. Если в сварочной дуге находятся легко ионизируемые элементы, пик зажигания снижается и, наоборот, он увеличивается при наличии в атмосфере дуги ионов фтора, которые при соединении с положительными ионами легко образуют нейтральные молекулы.  [c.42]

Эффективная тепловая мощность при дуговой и электрошлаковой сварке меньше полной тепловой мощности этих процессов. Разность между ними и составляет непроизводительные потери тепла.  [c.25]

Тепловые процессы при дуговой сварке  [c.25]

При электродуговой сварке для местного расплавления основного металла (металл изделия) используется тепловой эффект электрической дуги. Электрическая дуга представляет собой прохождение электрического тока через ионизированный газовый (дуговой) промежуток. Для поддержания дугового разряда между электродом и основным металлом необходим приток электрической энергии. Этот приток энергии обеспечивает источник питания сварочной дуги — источник электрической энергии, используемый в сварочном процессе. Источники питания для ручной сварки покрытыми электродами классифицируют, по роду тока и числу подключаемых сварочных постов.  [c.21]

Схемы источников теплоты, которые используются в расчетах тепловых процессов при дуговой и газовой сварке, зависят от распределения теплового потока источника теплоты, от размеров  [c.399]

Мы познакомились с основными положениями теории тепловых процессов сварки. Покажем, как используются эти положения при решении конкретных вопросов (см. далее). Все примеры взяты для дуговой сварки как наиболее важного и изученного технологического процесса и относятся к простым типовым случаям. Здесь не приведены расчеты тепловых процессов при газовой сварке, контактной электросварке и пр., так как они содержатся в соответствующих курсах и специальных работах.  [c.116]

Из табл. 9 следует, что эффективная тепловая мощность разряда, т. е. количество теплоты, введенное им за единицу времени Б металл изделия, прн воздушно-дуговой резке с указанными па-раметра.чи составляет 53—56%. При дуговой электрической сварке угольными электродами металл свариваемого изделия поглощает 50—60% тепловой энергии дугового разряда [13], что с известной степенью приближения можно отнести также и к дуговой резке. Следовательно, величины эффективного к. п. д. т] процесса нагрева зделия дугой, представляющего отношение количества теплоты, введенной дугой в металл, к тепловому эквиваленту электрической. мощности дуги, при дуговой и воздушно-дуговой резке идентичны.  [c.27]


Некоторые из расчетных методов, имеющих специфическое применение (определение нагрева и скорости плавления электродной проволоки при дуговой сварке, нагрев металла специальными многопламенными горелками, тепловые процессы при контактной сварке и др.), в учебнике не рассматриваются.  [c.195]

Процесс электрошлаковой сварки является более устойчивым, чем процесс дуговой сварки плавящимся электродом. Это объясняется тем, что низкочастотные колебания, например, из.менения напряжения сети, оказывающие влияние на состояние теплового процесса электрошлаковой сварки, сглаживаются за счет большой тепловой инерционности шлаковой ванны. Поэтому к источникам питания для электрошлаковой сварки предъявляют менее жесткие требования, чем к источникам питания для дуговой сварки плавящимся электродом. Для электрошлаковой сварки применяют более дешевые и простые источники., питания переменного тока с низким напряжением холостого хода, имеющие пологопадающую или жесткую внешнюю характеристику, конструкции которых рассмотрены в гл. 3, 2. Эти источники позволяют регулировать выходное напряжение в процессе электрошлаковой сварки, что обеспечивает стабильность заданных параметров и их изменение по соответствующей программе. Выходное напряжение регулируют двумя способами- ступенчато и плавно. При ступенчатом регулировании переключают соответствующие секции первичной обмотки трансформатора или вольтодобавочного трансформатора, включенного последовательно его вторичной обмотке, при плавном — применяют тиристорный регулятор или трансформатор с магнитной коммутацией.  [c.164]

Для создания таких условий и повышения тепловой эффективности процесса, а также снижения чувствительности последнего к качеству подготовки кромок и сборки стыков при дуговой сварке фланцев применяют дополни-  [c.22]

При сварочном нагреве высокие максимальные температуры способствуют растворению карбидов и оксидов и обусловливают j высокую скорость самодиффузионных процессов. В то же время большие скорости нагрева и относительно высокие скорости охлаждения ограничивают пребывание металла при высоких темпе- ратурах. В этих условиях в углеродистых и большинстве низколегированных сталей в процессе сварки дуговыми способами I аустенитное зерно в ОШЗ успевает вырасти практически до своих максимальных размеров, при этом рост зерна происходит как на этапе нагрева, так и на этапе охлаждения. Соотношение приращения размера зерна на этих этапах зависит от состава стали 4 и теплового режима сварки q/ vb) и температуры подо-у грева.  [c.513]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

Основные положения технологического процесса сварки. При сварке стержней арматуры из закаливающихся сталей Ст. 5, 25Г2С и 35ГС в первую очередь приходится учитывать свойства основного металла свариваемых элементов и условия работы конструкции. Прежде всего принимается во внимание повыщенная склонность этих сталей к воздушной подкалке. Резкое тепловое воздействие, оказываемое на основной металл в процессе дуговой сварки при наплавке валика на поверхность стержня, а также при его точечном поджоге или подплавлении, может вызвать его хрупкое разрущение. Склонность к хрупкому разрущению может быть свойственна и сварным швам. Это наблюдается при использовании прахбатон  [c.73]

Режимом сварки называют совокупность характеристик сварочного процесса, обеспечивающих получение сварных соединений заданных размеров, формы и качества. При ручной дуговой сварке к характеристикам режима относятся диаметр электрода, сила сварочного тока, напряжение на дуге, скорость перемещения электрода вдоль шва, род тока и его полярность и ряд других показателей. При газовой сварке под режимом в основном понимают тепловую мощность газового пламени, вид пламени, скорость нагрева, способ сварки. Режим сварки оказывает большое влияние на качество и форму сварного шва. Размеры и форма шва в значительной степени предопределяют стойкость металла шва против возникновения кристаллизационных трещин, плавность перехода от основного металла к металлу шва и вероятность образевания подрезов, непроваров, наплывов и других дефектов. Влияние факторов режима сварки на размеры и форму шва выражается по-разному.  [c.87]

Дуговая сварка плавлением при помощи электрической дуги или других источников тепловой энергии широко распространена благодаря простоте соединения частей металла путем местного расплавления соединяемых поверхностей. Расплавление основного и присадочного металла облегчает их физические контакты, обеспечивает подобно жидкостям смешивание металлов в жидкой сварочной ванне, одновременно удаляя оксиды и другие загрязнения. Происходят металлургическая обработка расплавленного металла и его затвердевание, образуются новые межатомные связи. В кристаллизуемом металле образуется сварной шов (рис. 1.2, в). Свойства сварного шва и соединения в целом регулируются технологией расплавления металла, процессом его обработки и кристаллизации. Взаимная растворимость в л<идком состоянии и образование сварного шва характерны для однородных металлов, например для стали, меди, алюминия и др. Более сложным оказывается соединение разнородных материалов и металлов. Это объясняется большой разницей их физико-химических свойств температуры плавления, теплопроводимости и др., а также несходством атомного строения. Некоторые металлы, например железо и свинец и др., не смешиваются при расплавлении и не образуют сварного соединения другие — железо и медь, железо и, никель, никель и медь хорошо смешиваются при сварке образуют твердые растворы. Для соединения металлов, не поддающихся смешиванию при расплавлении, применяют особые виды сварки и методы ее выполнения.  [c.8]


Аустенитные стали по сравнению с углеродистыми имеют примерно в 2 раза меньшую теплопроводность и в 1,5 раза больший коэффициент теплового расширения, что значительно увеличивает коробление изделий в процессе сварки наименьшее.коробление достигается при сварке под флюсом н в защитных газах. Кислотостойкие хромоникелевые аустенитные стали типа 18-8 (например, 1Х18Н9Т) подвержены весьма опасному виду коррозионного разрушения—меж-кристаллитной коррозии. Для предупреждения межкристаллнтной коррозии в сварных швах и уменьшения коробления во время сварки недопустим перегрев металла. Дуговую сварку необходимо вести короткой дугой на повышенных скоростях при сварке металла большой толщины с разделкой кромок каждый последующий слой накладывать после полного остывания предыдущего шва. Швы, обращенные к агрессивной среде, следует выполнять в последнюю очередь, не подвергая их по возможности повторному нагреву.  [c.3]

Вторая проблема — оптимизация физико-химических и металлургических условий, обеспечивающих наивысшее качество обработки материалов. Процессы газопламенной обработки представляют собой далеко не простые объекты для физического моделирования и построения математических моделей. В настоящее время сделаны лишь первые шаги по разработке физических и газогидродинамических моделей некоторых процессов, например кислородной и плазменно-дуговой резки, напыления материалов на поверхности изделий и т. д. В будущем должны быть созданы замкнутые системы управления и контроля за ходом физикохимических реакций, тепловых процессов и т. д. при сварке, резке и напылении материалов. В этих системах необходимо предусмотреть устройства для сбора и обработки информации о данном технологическом процессе, а также оптимизации выдаваемых управляющих воздействий на параметры процесса, получаемых с помощью электронно-вычислительных систем. Проблема, безусловно, весьма сложная, но решение ее будет, несомненно, способствовать дальнейшему прогрессу газопламенной техники.  [c.250]

Для гетерогенных, термически упрочняемых сталей при сварке имеет место большая степень повреждаемости ЗТВ. Длительная прочность снижается по отношению к основному металлу на 10—15% более значительно падает пластичность, что увеличивает вероятность локальных разрушений в процессе длительной эксплуатации при высоких температурах. Эффективной мерой их предупреждения служит периодически проводимая аустеиитизация сварных стыков (например, паропроводов) [5], а также применение талей повышенной частоты в результате вакуумно-дугового переплава. Повышению жаропрочности ЗТВ также способствуют лучевые способы сварки обеспечивающие минимум теплового воздействия и предотвращающие рост зерна.  [c.271]

Газоэлектрическая сварка используется в нескольких вариантах а) неплавящимся вольфрамовым электродом непрерывно горящей или импульсной дуго11 [68] б) плавящимся металлическим электродом. Первый вариант процесса применяется для выполнения протяженных швов на относительно тонкостенных элементах, стыковых соединений труб небольшого диаметра (примерно до 60 мм), а также для наложения корневых валиков в разделке при выполнении сварки толстостенных элементов. В качестве защитной среды преимущественно исполь-.чуется аргон иногда с добавкой водорода. Особенности кристаллизации металла сварочной ванны прп импульсно-дуговой сварке позволяют улучшить формирование шва, способствуют дезориентации столбчатой его структуры, а также уменьшить тепловое воздействие на околошовные зоны. Последнее обстоятельство приводит к минимальному короблению свариваемых кромок, отсутствию провисания зоны проплавления, а также повышает сопротивляемость шва образованию горячих (кристаллизационных и полигонизационных) трещин. Однако и.м-пульсный процесс сварки некоторых аустенитных (в особенности, литых) сталей может повести к образованию околошовных надрывов.  [c.96]

Плазменная сварка в вакууме полым неплавящимся катодом (рис. 6.10). В качестве источника теплоты используется дуговой разряд с полым катодом (ДРПК). Сварка осуществляется стабильно в диапазоне давления в камере 1... 1 10 Па при расходе через полость катода аргона 1...2 мг/с (2...4 л/ч). При этом эффективный КПД составляет 0,8...0,85. Возможность регулирования процесса эффективной мощностью и распределением плотности теплового потока в пятне нагрева за счет изменения тока разряда, длины дугового промежутка, подачи аргона через полый катод и воздействия аксиального магнитного поля позволяет получать высококачественные сварные соединения тугоплавких и химически активных  [c.413]

Тепловые напряжения, возникающие при газопламенной правке, по физической сущности такие же, как при дуговой или газовой сварке. Различие заключается в том, что температура нагрева при газопламенной правке, как правило, не превышает 900° С, а сам процесс нагрева протекает сравнительно быстро. Осуществление быстрого нагрева — одно из основных требований газопламенной правки. Поэтому для этих целей наиболее рационально использование ацетилено-кислородного пламени, обеспечивающее интенсивный подвод теплоты, превышающий его потери за сяет теплопроводности металла.  [c.190]


Смотреть страницы где упоминается термин Процессы тепловые при сварке дуговой : [c.198]    [c.28]    [c.13]    [c.151]    [c.241]    [c.40]    [c.379]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.55 , c.57 ]



ПОИСК



Процесс сварки

Процесс тепловые

Сварка дуговая

Сварка тепловые процессы



© 2025 Mash-xxl.info Реклама на сайте