Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы тепловые при сварке электрошлаковой

Процессы тепловые при сварке дуговой 55—57 лазерной 59—60 электроннолучевой 59 электрошлаковой 57—59 Процесс сварки, схема И—14 Процессы физико-металлургические при сварке плавлением 32—103 в защитных газах 77—81 дуговой 32—44 лазерной 52—54 под флюсом 76—77 покрытыми электродами 75—76, 308—314 электроннолучевой 49—52 электрошлаковой 44—49 Пушки электроннолучевые, системы 50—51  [c.762]


Распределение тепла при сварке. Расплавление основного металла при дуговых процессах сварки осуществляется под действием тепла, выделяемого электрической дугой, а при электрошлаковой сварке за счет тепла, выделяющегося при прохождении тока через электропроводную шлаковую ванну. Тепловая мощность сварочной дуги или шлаковой ванны зависит от электрических параметров режима сварки и подсчитывается по формуле  [c.18]

При обычной электрошлаковой сварке на образование сварного соединения затрачивается излишняя тепловая энергия (в 2—3 раза больше, чем необходимо), что ограничивает производительность процесса и приводит к резкому ухудшению структуры и свойств сварного соединения. Эффективность процесса существенно возрастает, если Б зону сварки вводить дополнительный порошкообразный присадочный металл (ППМ).  [c.143]

Тепловые процессы при электрошлаковой сварке  [c.233]

Одна из наиболее характерных особенностей тепловых процессов при электрошлаковой сварке — значительная распределенность источника теплоты. Основной металл подогревается шлаком на довольно значительной длине, составляющей около  [c.233]

ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ ЭЛЕКТРОШЛАКОВОЙ СВАРКЕ  [c.153]

Тепловые процессы при электродуговой и электрошлаковой сварке  [c.24]

Эффективная тепловая мощность при дуговой и электрошлаковой сварке меньше полной тепловой мощности этих процессов. Разность между ними и составляет непроизводительные потери тепла.  [c.25]

При электрошлаковой сварке с порошкообразным присадочным металлом (ППМ), которая находит все большее примеиение в промышленности вследствие резкого увеличения скорости сварки по сравнению с обычной электрошлаковой сваркой, термические циклы рассчитываются по схеме одного линейного источника тепла, движущегося в пластине. Этот линейный источник тепла следует распо лагать по оси шва на глубине 15—20 мм от поверхности шлаковой ванны, в тепловом центре процесса с температурой 2100—2150° С Скорость охлаждения и длительность нагрева определяются по уравнениям (П.11), (11.13).  [c.31]

Источники, тепловой поток которых практически мало меняется в течение всего процесса сварки. Это электрические дуги с различной защитой, газовое пламя перемещающегося источника, источники при электрошлаковом процессе, электроннолучевой сварке, контактной роликовой сварке и некоторые другие.  [c.395]


Особенности протекания тепловых процессов при электрошлаковой сварке  [c.492]

Одной из наиболее характерных особенностей тепловых процессов при электрошлаковой сварке является значительная распределенность источника теплоты. Основной металл подогревается шлаком на довольно значительной длине, составляющей около 30-ь70 мм. На заключительной стадии нагрева перед  [c.492]

Электрошлаковая сварка. Выделение теплоты при электрошлаковом процессе происходит в результате прохождения электрического тока через расплавленный шлак. Выделяемое в шлаковой ванне в единицу времени количество теплоты пропорционально тепловому эквиваленту подводимой электрической энергии. Другие источники теплоты столь невелики, что ими можно пренебречь. Эффективная мощность источника теплоты при электрошлаковой сварке всегда меньше так как она не включает часть теплоты, теряемой шлаковой ванной на теплоотдачу в окружающую среду и в формирующее устройство (рис. 2-15). Теплота поступает в из-  [c.57]

Тепловые потери при электрошлаковом процессе прежде всего связаны с отбором теплоты формирующими устройствами и излучением с открытой поверхности сварочной ванны. Эффективность нагрева изделия возрастает с увеличением толщины свариваемого металла, его температуропроводности и скорости сварки, так как теплоотвод в изделие при этом увеличивается.  [c.19]

Процесс электрошлаковой сварки является более устойчивым, чем процесс дуговой сварки плавящимся электродом. Это объясняется тем, что низкочастотные колебания, например, из.менения напряжения сети, оказывающие влияние на состояние теплового процесса электрошлаковой сварки, сглаживаются за счет большой тепловой инерционности шлаковой ванны. Поэтому к источникам питания для электрошлаковой сварки предъявляют менее жесткие требования, чем к источникам питания для дуговой сварки плавящимся электродом. Для электрошлаковой сварки применяют более дешевые и простые источники., питания переменного тока с низким напряжением холостого хода, имеющие пологопадающую или жесткую внешнюю характеристику, конструкции которых рассмотрены в гл. 3, 2. Эти источники позволяют регулировать выходное напряжение в процессе электрошлаковой сварки, что обеспечивает стабильность заданных параметров и их изменение по соответствующей программе. Выходное напряжение регулируют двумя способами- ступенчато и плавно. При ступенчатом регулировании переключают соответствующие секции первичной обмотки трансформатора или вольтодобавочного трансформатора, включенного последовательно его вторичной обмотке, при плавном — применяют тиристорный регулятор или трансформатор с магнитной коммутацией.  [c.164]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

Электрошлаковая сварка. Одной из наиболее характерных особенностей тепловых процессов при электрошлаковой сварке является значительная распределенность источника тепла. Схему нагрева обычно представляют приближенно как движение трех распределен ных (плоских) нсточникон тепла, двух шлаковых н одного металлического (см. рис. П.13, а) или как движение трех линейных источников тепла, движуш,ихся по сварив-аемой кромке на определенных расстояниях друг от друга (см. рис. 11.13, б).  [c.31]



Смотреть страницы где упоминается термин Процессы тепловые при сварке электрошлаковой : [c.379]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.57 , c.59 ]



ПОИСК



Процесс сварки

Процесс тепловые

Сварка тепловые процессы

Сварка электрошлаковая

Тепловые процессы при сварке электрошлаковой сварке

Тепловые процессы при сварке электрошлаковой сварке

Тепловые процессы при электродуговой и электрошлаковой сварке

Электрошлаковая (-ый)

Электрошлаковый процесс



© 2025 Mash-xxl.info Реклама на сайте