Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации Равновесие

Указанным условиям удовлетворяют линейные уравнения теории упругости, а именно, общее решение уравнений равновесия (совместности деформаций) выражаются при помощи оператора, являющегося формально сопряженным оператору, входящему в уравнения совместности деформаций (равновесия).  [c.451]

Д "кр = 21а упругих деформациях равновесие в отклоненном положении  [c.411]

РАБОТА ДЕФОРМАЦИИ —РАВНОВЕСИЕ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.262]


После определения компонентов напряжений могут быть найдены деформации или скорости деформаций. В дальнейшем, как это обычно принято [81, будем говорить об определении скоростей деформаций равновесия или скоростей перемещений.  [c.173]

После теоретических исследований различных факторов, влияющих на усилие вытяжки, В. Е. Недорезов составил общее дифференциальное уравнение равновесия, рассматривая элементарный сектор и условия действия сил при его перемещении во время деформации  [c.18]

Напряжения, вызывающие смещение атомов в новые положения равновесия, могут уравновешиваться только силами межатомных взаимодействий. Поэтому под нагрузкой при пластическом деформировании деформация состоит из упругой и пластической составляющих, причем упругая составляющая исчезает при разгрузке (при снятии деформирующих сил), а пластическая составляющая приводит к остаточному изменению формы и размеров тела. В новые положения равновесия атомы могут переходить в результате смещения в определенных параллельных плоскостях, без существенного изменения расстояний между этими плоскостями. При этом атомы не выходят из зоны силового взаимодействия и деформация происходит без нарушения сплошности металла, плотность которого практически  [c.53]

Рассмотрим структурный элемент материала, где происхо дит элементарный акт макроразрушения (разрушение структурного элемента принимается за условие зарождения макроразрушения). Под критической деформацией е/, отвечающей зарождению макроразрушения, будем принимать такую деформацию, при которой случайное отклонение в площади пор по какому-либо сечению структурного элемента (предполагается, что распределение пор по любому сечению структурного элемента одинаково) приводит к локализации деформации по этому сечению, а следовательно, к потере пластической устойчивости рассматриваемого элемента без увеличения его нагруженности. Случайное увеличение в площади пор, которое может иметь место при любой деформации структурного элемента в любом его сечении, приводит к случайному отклонению по силе F, действующей на нетто-сечение (площадь нетто-сечения 5н структурного элемента равна разности начальной площади и площади пор). Для сохранения равновесия в элементе это отклонение (уменьшение) должно быть скомпенсировано увеличением нормального к рассматриваемому сечению истинного (отнесенного к нетто-сечению) напряжения бон. Если это увеличение можна  [c.117]


Фторопласт-4 отличается высокой стойкостью против деформации. Из кривых, приведенных на рис. 250 и изображающих зависимость степени деформации от времени нагрузки, вытекает, что деформация происходит в первые часы после нагрузки, а потом устанавливается состояние равновесия, при котором размеры испытываемого изделия остаются постоянными.  [c.430]

Модели для анализа напряжений и упругих деформаций твердых тел формируют с помощью основного уравнения теории упругости — уравнения Ламе. Это уравнение получается из условия равновесия сил, действующих на элемент твердого тела в направлении оси Xii  [c.157]

Модели для анализа напряжений и деформаций часто оказываются более удобными, если представлены в интегральной форме, вытекающей из вариационных принципов механики. Вариационный принцип Лагранжа (принцип потенциальной энергии) гласит, что потенциальная энергия системы получает стационарное значение на тех кинематически возможных перемещениях, отвечающих заданным граничным условиям, которые удовлетворяют условиям равновесия. Поэтому модель представляют в виде выражения потенциальной энергии П системы как разности энергии деформации Э и работы массовых и приложенных поверхностных сил А  [c.158]

Уравнения состояния, задающие тензор напряжения среды о и внутреннюю энергию и, записываются в предположении локального термодинамического равновесия, когда в каждой точке можно определить температуру среды Т. При этом считается, что тензор скорости деформации е Р определяется полем барицентрических скоростей смеси о  [c.22]

Расчеты на прочность и жесткость являются основными видами расчетов, изучаемых в курсе сопротивления материалов. Однако имеется ряд задач, в которых самое серьезное внимание приходится уделять вопросам устойчивости, под которой понимается способность конструкции и ее элементов сохранять определенную начальную форму равновесия. Расчет на устойчивость должен обеспечить отсутствие качественного изменения характера деформации.  [c.122]

В соответствии с гипотезой плоских сечений полагаем, что для однородного стержня все поперечные сечения при деформации перемещаются параллельно и, следовательно, в них действуют только нормальные напряжения, равномерно распределенные по сечению. Рассечем стержень плоскостью I—/ (рис. 91, а), перпендикулярной оси стержня. Из условия равновесия части стержня (рис. 91, б), принимая во внимание, что равнодействующая внутренних сил упругости N = Ра (где Р — площадь поперечного сечения), имеем Ра — Р = 0. Отсюда напряжение в поперечном сечении стержня при растяжении или сжатии  [c.130]

Так как деформация при кручении зависит от величины крутящего момента, действующего в данном сечении, необходимо рассмотреть методику определения крутящего момента в любом сечении цилиндра. В месте закрепления цилиндра (рис. 131, б) возникает реактивный крутящий момент Л1р, равный внешнему крутящему моменту М, приложенному к свободному концу цилиндра. Рассечем цилиндр плоскостью / и рассмотрим равновесие его нижней части (рис. 131, в). Для нахождения нижней части в равновесии необходимо, чтобы момент внутренних сил упругости в данном сечении уравновешивал реактивный момент Мр, равный М  [c.188]

Окончательные эпюры N, Q к М подлежат обязательной проверке. Проверяют при этом условия равновесия и деформаций.  [c.426]

Устойчивость формы равновесия деформированного тела зависит от величины приложенных к нему нагрузок. Например, если силы, сжимающие стержень, невелики, то первоначальная форма равновесия остается устойчивой (рис. 498, а). При возрастании величин приложенных сил достигается состояние безразличного равновесия, при котором наряду с прямолинейной формой стержня возможны смежные с ней слегка искривленные формы равновесия (штриховые линии на рис. 498, б). При дальнейшем самом незначительном увеличении нагрузки характер деформации стержня резко меняется—  [c.501]

Можно утверждать, что достижение нагрузками критических значений равносильно разрушению конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что связано с практически неограниченным ростом деформаций и напряжений.  [c.502]


Равновесие элемента устойчиво, если малому изменению нагрузки соответствует малое изменение деформаций.  [c.5]

Наоборот, равновесие неустойчиво, если ограниченный рост нагрузки сопровождается теоретически неограниченным ростом деформаций. Практически стержень, после потери устойчивости, разрушится от чрезмерных напряжений.  [c.5]

Действительное напряженное состояние равновесия упругого тела (системы) отличается от всех смежных состояний равновесия тем, что оно дает минимум потенциальной энергии деформации.  [c.67]

Так как неизвестных два, а уравнение равновесия одно, то потребуется составить одно дополнительное уравнение при рассмотрении деформации стержня или перемещения его сечений. Такие системы называются системами один раз (однажды) статически неопределимыми.  [c.67]

Решим эту же задачу способом сравнения деформаций. Принимая все усилия растягивающими, получаем два уравнения равновесия (рис. И.38, а, б)  [c.72]

Для определения усилий в стержнях используем способ сравнения деформаций. Из условий равновесия получим h Мв = = 0, откуда N = N3 S ) = 0, откуда N2 = = 2(Vi.  [c.76]

Потеря устойчивости упругого равновесия возможна также при кручении, изгибе и сложных деформациях.  [c.266]

Равновесие и движение бесконечно тонкой, первоначально плоской, изотропной пластинки. Расширение малой части пластинки. Потенциал сил, производимых расширением. Бесконечно малая деформация. Равновесие при предельных пере-меьцениях. Дифференциальные уравнения поперечных колебаний свободной пластинки. Интегрирование последних для круглой пластинки. Поперечные колебания напряженной мембраны)  [c.371]

В соответствии с указанными условиями однозначности скорости фаз на входе в канал равны (коэффициент скольжения фаз фг, = = 1), слой не продувается и находится под действием сил предельного равновесия в плотном состоянии. Последнее означает, что твердый компонент достиг такой объемной концентрации, при которой все соседние частицы обязательно кон-тактируются друг с другом. Движение плотного слоя возникает за счет периодического нарушения предельного равновесия, приводящего к конечным деформациям сдвига без разрыва контактов. Однако согласно граничным условиям на стенке канала скорость частиц не падает до нуля. Так как для газовой среды (и)ст = 0, то Фг с,т= ( т/ )ст—>-оо. Наконец, условие ф1,= 1 на входе в канал не означает, как это обычно полагают, автоматического равенства скоростей фаз непродуваемого слоя по длине канала. Предварительные опыты показали, что при определенных условиях и в ядре движущегося слоя возможно небольшое проскальзывание фаз потока. Если пренебречь отмеченными смещениями скорости компонентов слоя, т. е. если положить фч,= 1, то v vi = v n-Если дополнительно принять, что концентрация (пороз-ность) движущегося плотного слоя неизменна (p = onst), то тогда взамен уравнения сплошности (1-30) приближенно получим  [c.288]

Если при упругих деформациях деформируемое тело полностью восстанавливает исходные форму и размеры после снятия вненших сил, то при пластических деформациях изменение формы и размеров, вызванное действием внешних сил, сохраняется и после прекраш,е-ния действия этих сил. Упругая деформация характеризуется смещением атомов относительно друг друга на величину, меньшую межатомных расстояний, и после снятия внешних сил атомы воз-враш,аются в исходное положение. При пластических деформациях атомы смещаются относительно друг друга на величины, большие межатомных расстояний, и после снятия внешних сил ие возвращаются в свое исходное положение, а занимают новые положегшя равновесия.  [c.53]

Остаточные сварочные напряжения представляют собой систему внутренних сил, находящихся в равновесии. При нарушении этого равновесия напряжения перераспределяются, что сопровождается упругими и иласт ическими деформациями в дополнение к сварочным деформациям, полученным ранее в процессе сварки. Поэтому при механической обработке сварных заготовок часто невозможно добиться высокой точности их размеров.  [c.252]

При деформации металла расстояния между атомами под действием внешних сил изменяются по определенным направлениям, линии и плоскости, проходящие через атомы, искривляются, кристаллическая решетка искажается. Так как при этом равнодействующие сил притяжения и отталкивания между атомами уже ке равны нулю, то в решетке будут действовать внутренние силы, стремящиеся вернуть атомы в положение равновесия. Зависимость между малыми смещениями атомов и силами взаимодействия с известной степенью приближечия можно считать линейной. Суммарно это проявляется в линейной зависимости между смещениями точек тела и внешними силами, выражаемой законом Гука.  [c.105]

Проводя расчеты на прочность и жесткость при различных деформациях, мы полагали, что во время деформации любой системы имеет место единственная заранее известная форма равновесия. В действительности же в деформированном состоянии равновесие между внешними и вызываемыми ими внутреннил(н силами упругости может быть не только устойчивым, но и неустойчивым.  [c.501]

Таким образом, сумма и разность компонент поля удовлетворяет условию оптимальности для фермы, полученной путем суперпозиции компонент фермы (с эталонной скоростью деформаций 2 q), тогда как сумма Q l и разность Q" усилий Qj и Qi в стержнях компонент фермы находятся в равновесии с заданными возможными нагрузками Р — Р- -Р и Р" = Р — Р. Эти замечания устанавливают принцип суперпозиции при условии, что в каждом стержне j фермы, полученной путем суперпозиции, усилия Q = Qi + Qi vi Q" = Qi—Qi имеют знаки, совпадающие со знаками скоростей деформации q i = 4i+qi и = —Покажем теперь, что это условие выполняется. В дальнейших рассуждениях существенно отметить, что, когда осевая скорость деформаций стержня равна нулю, усилие в стержне может иметь любое значение, лежащее между усилиями текучести при растяжении и сжатии.  [c.55]


Небольщие деформации не оказывают существенного влияния на законы равновесия и движения тела, вследствие чего в теоретической механике ими пренебрегают. Однако без изучения этих деформаций невозможно рещить очень важную для практики задачу, при каких условиях может произойти разруще-иие детали и, наоборот, при каких условиях деталь может безопасно работать.  [c.4]


Смотреть страницы где упоминается термин Деформации Равновесие : [c.494]    [c.115]    [c.66]    [c.25]    [c.22]    [c.117]    [c.65]    [c.25]    [c.43]    [c.62]    [c.138]    [c.182]    [c.182]    [c.329]    [c.329]    [c.147]    [c.106]    [c.12]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.657 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.657 ]



ПОИСК



112, при конечных перемещениях 112 Смешанный метод расчета 87 - Статическая неопределимость 81 - Уравнения равновесия стержней и узлов 89, механики 89 - Условия подобия 89 - Устойчивость 96 - Энергия линейной деформации

437, 443 малая деформация ксивых —, 463 — 466 различные частные задачи о равновесии кривых

554, 555—557, 559—561 определение упругого усилия и момента, 554 потенциальная энергия — при деформации общего вида, 41, 557, 55Н уравнения равновесия —, 561—563 уравнения колебания — 41, 565 граничные

Деформации. Уравнения равновесия (движения). Работа деформации

Деформация. Уравнения равновесия (движения). Работа внешних сил

Дифференциальные уоавнения равновесия круговой цилиндрической оболочки (17С) L Перемещения и деформации в круговой цилиндрической оболочке

Дифференциальные уравнения равновесия для общего случая деформации цилиндрической оболочки

Идеальные волокнистые композиты, конечные плоские деформации, градиенты равновесие результирующих сил

Идеальные волокнистые композиты, конечные плоские деформации, градиенты уравнения равновесия

Кругоьой цилиндр равновесие симметричная деформация

Неустойчивость равновесия напряжений в цилиндрах прн пластической деформации

Неустойчивость равновесия напряжений в цилиндрах прн пластической деформации стержня кругового сечения

Перемещения, деформации, уравнения неразрывности, напряжения в слоях, уравнения равновесия элемента оболочки, граничные условия

Полярные координаты объемное расширение и вращение в---------68 компоненты деформации в---------, 68 уравнение равновесия

Полярные координаты объемное расширение и вращение в---------68 компоненты деформации в---------, 68 уравнение равновесия деформация анизотропной сферы

Полярные координаты объемное расширение и вращение в---------68 компоненты деформации в---------, 68 уравнение равновесия применение —— в теории деформации—имеющей особые точки, 211 ---в задаче о деформации шара, 234 -в задаче о колебаниях полого шара

Преобразование уравнений равновесия объемного элемента к декартовым координатам точек тела до деформации

Составляющие деформации. Перемещения. Дифференциальные уравнения равновесия

Сферическая оболочка (тонкая! деформация без удлинений---------, 531 колебания без удлинений---------, 535 равновесие---------------------при деформации общего

Сферическая оболочка (тонкая! деформация без удлинений---------, 531 колебания без удлинений---------, 535 равновесие---------------------при деформации общего характера, 611—615 краевой эффект

Теорема — взаимности, 184 — единственности решения уравнений равновесия энергии деформации, 183 — о минимуме энергии, 182 —о свободных колебаниях упругих систем, 190 — о трех

Уравнения равновесия алементарных тетраэдра и параллелепипеда в декартовых координатах, определяющих положение точек тела до деформации Постнов)

Уравнения равновесия положение точек до деформации

Уравнения равновесия при осесимметричной деформации оболочек вращения

Уравнения совместности деформаций и равновесия

Условия равновесия и общий метод определения напряжений, деформаций и перемещений в теле

Шар равновесие—, 23, 29, 261 деформация — из анизотропного материала

Шулькин, А. О. Кунцевич. Равновесие упругой гибкой нити при большой деформации

Эллипсоид решение уравнений равновесия для случая —, 250, 276, 286 деформации, 48, 75 — напряжения

Энергия упругой деформации . 112. Устойчивость упругого равновесия



© 2025 Mash-xxl.info Реклама на сайте