Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации. Уравнения равновесия (движения). Работа деформации

Деформация. Уравнения равновесия (движения). Работа внешних сил  [c.14]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


Клин расклинивается вследствие падения нагрузки до нуля Mq = 0), при этом освобождается часть потенциальной энергии деформации механизма (часть ее составляет работу упругого гистерезиса) и звездочка отстает в движении от наружной обоймы и как бы поворачивается от нее по часовой стрелке (рис. 96). Если считать, что вся освободившаяся энергия деформации тратится на работу трения при расклинивании и клин находится в предельном зацепленном состоянии, то уравнения равновесия клина запишем в таком виде  [c.161]

Завершающим этапом построения гидродинамики вязкой жидкости стала работа Дж. Г. Стокса 1845 г. Стокс дал, независимо от Пуассона и Сен-Венана, строгий вывод уравнений движения вязкой жидкости на основе линейной зависимости шести компонент напряжений от шести компонент скоростей деформации жидкой частицы. Жидкость Стокс определял как среду, в точках которой разность давления на произвольно ориентированной площадке и среднего давления, которое имело бы место при относительном равновесии, определяется лишь скоростью относительной деформации частицы. В результате Стокс пришел к уравнениям, содержащим, вообще говоря, два коэффициента вязкости. Однако на основании ряда соображений (на которых он впоследствии не настаивал) Стокс высказал предположение, эквивалентное требованию равенства нулю второго коэффициента вязкости, и выписал уравнения в виде  [c.68]

Из этого перечня видно, что книга не претендует на освещение всех вопросов теории упругости анизотропного тела, а излагает только некоторые, наиболее изученные, но еще не приведенные в систему. В ней не содержится исследований по изгибу и устойчивости анизотропных пластинок, так как эти вопросы достаточно полно разработаны в нашей книге <Анизотропные пластинки . Задача о плоской деформации и обобщенном плоском напряженном состоянии изложена сжато (в связи с более общей задачей), причем из частных случаев рассмотрены только наиболее важные. В книге не затронуты проблемы равновесия и устойчивости анизотропных оболочек, а также динамики упругого тела (за исключением общих уравнений движения) Во всех случаях предполагается, что деформации являются упругими и малыми, а материал следует обобщенному закону Гука. В конце имеется перечень литературы, куда, кроме работ, излагающих специальные вопросы, включены также некоторые основные курсы теории упругости.  [c.12]


Модель [350] исходит из предположения о том, что дислокации, образованные внутри зерна, перемещаются в граничную зону скольжением [367]. Вдоль границы эти дислокации движутся, комбинируя скольжение и переползание. Скорость проскальзывания пропорциональна составляющей вектора Бюргерса, пЕфаллельной плоскости границы, и определяется переползанием, зависящим от объемной диффузии. Поскольку проскальзывания вызываются движением тех же дислокаций, скольжение которых ведет к деформации зерна, естественно ожидать линейной зависимости между деформацией, обусловленной проскальзыванием, и общей деформацией ползучести е. Такая зависимость, действительно, часто наблюдалась [341-344]. В работе [350] предполагалось также, что либо расстояние от дислокащи до границы- (рис. 14.11) очень мало, либо дислокация перемещается в плоскости границы. Расстояние между дислокациями а рис. 14.11) определяется условием равновесия поля напряжения дислокации и приложенного скалывающего напряжения а 1/т. Скорость неконсервативного движения дислокаций зависит от испускания и поглощения вакансий [368]. Внешнее напряжение определяет только равновесную концентрацию вакансий вблизи ядра дислокации. Путем использования уравнения для скорости переползания изолированной дислокации в бесконечном кристалле разд. 2.1.2) получено уравнение [350] для скорости деформации, вызываемой проскальзыванием  [c.218]

Как уже отмечалось, рабочей средой в аттриторах служат порошки, которые размалываются шарами. Процесс этот сугубо динамический, поэтому модели, построенные на рассмотрении сплошной среды со взвешенными частицами с использованием обыкновенных дифференциальных уравнений, не могут адекватно описать динамику напряженно-деформированного состояния порошков. В работе [510] проведено моделирование воздействий при пластической деформации малых частиц в случае их обработки в аттриторах. Построено плоское силовое поле, основанное на принципе динамического равновесия. При этом движение совокупности размольных шаров предполагается установленным, а градиент скорости обеспечивается лишь по направлению от оси аттри-тора к его стенкам. Это позволило оценить величину импульса, действующего на частицу порошка, которую считают броуновской, т.е. траектория задается случайным образом. Недостаток указанной модели заключается в том, что в ней не учитываются особенности напряженно-деформированного состояния порошков.  [c.312]

Сила упругости характеризуется коэффициентом жесткости пружин К и амплитудой А колебаний массы корпуса, вызывающей деформацию пружин. Эта сила выражается произведением КА и всегда направлена против движения колеблющейся массы. Сила сопротивления мало влияет на режим работы машины и поэтому ею можно принебречь. С таким допущением уравнение динамического равновесия трех действующих в системе сил запишется в виде  [c.313]


Смотреть страницы где упоминается термин Деформации. Уравнения равновесия (движения). Работа деформации : [c.20]    [c.65]   
Смотреть главы в:

Основы термоупругости  -> Деформации. Уравнения равновесия (движения). Работа деформации



ПОИСК



Движение без деформации

Деформации Равновесие

Деформации Уравнения

Деформация. Уравнения равновесия (движения). Работа внешних сил

Работа деформации

Уравнение работы

Уравнения движения и уравнения равновесия

Уравнения движения равновесия

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте